理数個別チャンネル - 質問解決D.B.(データベース) - Page 23

理数個別チャンネル

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

担当科目:【小中高生対象】算数、数学、理科、英語、他

理数個別指導学院の講師陣が運営する、小・中・高生対象の「算数・数学・理科・英語」の問題や単元のピンポイント解説動画コンテンツです。
分からなくて困っている単元や問題文の一部を「知恵袋」感覚で是非検索してみてください。
「ほぼ毎日」更新中です!!

【高校数学】東京大学2025年度理系数学第2問 積分と極限の問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
■【東京大学 2025】
(1)$x>1$のとき、不等式$logx≦x-1$を示せ。
(2)次の極限を求めよ。
$\displaystyle\lim_{n\to \infty}n\displaystyle \int_1^2log\displaystyle(\frac{1+x^{\frac{1}{n}}}{2})dx$
この動画を見る 

【小6算数手元解説】受験算数 逆に買った②【問題文は概要欄】

アイキャッチ画像
単元: #算数(中学受験)#文章題#平均算・過不足算・差集め算・消去算
教材: #SPX#中学受験教材#6年算数D-支援
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある人が1500円の予算で甲、乙2種類の品物を合わせて20種類の品物を合わせて20個買うつもりで店に入ったところ、希望通りに買うと140円不足することがわかったので、甲、乙の個数を反対にして、 合計20個買うことにしたら60円の不足ですみました。甲は乙より1個につき20円高いとすれば、甲の1個の代金は何円でしょうか。
この動画を見る 

【数A】【場合の数と確率】期待値、このゲームは得?損? ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
白玉2個、黒玉5個、赤玉3個が入っている袋から玉を1個取り出し、白玉が出たら1000円、黒玉が出たら100円もらえ、赤玉が出たら800円を支払うゲームがある。ゲームの参加料が0円であるとき、このゲームに参加することは得であるといえるか。
この動画を見る 

【数A】【場合の数と確率】コインを投げたときの得点の期待値 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3枚の硬貨を同時に投げて、表が3枚出たら100点、2枚出たら50点を獲得し、1枚のときは60点を、1枚も出ていないときは70点を失うものとする。1回硬貨を投げるときの得点の期待値を求めよ。
この動画を見る 

【数A】【場合の数と確率】さいころ2個の目の積の期待値 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2個のさいころを同時に投げるとき、2個の目の積の期待値を求めよ。
この動画を見る 

【数A】【場合の数と確率】条件付き確率、帽子を忘れてくる確率 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
5回に1回の割合で帽子を忘れるくせのあるK君が、正月A、B、C3軒を順に年始回りをして家に帰ったところ、帽子を忘れてきたことに気がついた。2番目の家Bに忘れてきた確率を求めよ。
この動画を見る 

【数A】【場合の数と確率】条件付き確率、原因の確率 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある電器店が、A社、B社、C社から同じ製品を仕入れた。A社、B社、C社から仕入れた比率は4:3:2であり、製品が不良品である比率はそれぞれ3%、4%、5%であるという。いま、大量にある3社の製品をよく混ぜ、その中から1個抜き取って調べたところ、不良品であった。これがA社から仕入れたものである確率を求めよ。
この動画を見る 

【数A】【場合の数と確率】条件付き確率2 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Aの袋には白玉3個と赤玉2個、Bの袋には白玉2個と赤玉3個、Cの袋には白玉1個と赤玉4個が入っている。1個のさいころを投げて1の目が出たらAの袋を、2,3の目が出たらBの袋を、4~6の目が出たらCの袋を選び、1個の玉を取り出すものとする。取り出された玉が白玉であったとき、それがCの袋から取り出された玉である確率を求めよ。
この動画を見る 

【数A】【場合の数と確率】条件付き確率1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ジョーカーを除く1組52枚のトランプから2枚のカードを同時に抜き出す。2枚のうちの少なくとも1枚はハートであることがわかっているとき、残りの1枚もハートである確率を求めよ。
この動画を見る 

【数A】【場合の数と確率】確率の乗法定理 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
箱Aには赤玉3個と白玉2個、箱Bには赤玉と白玉2個ずつ入っている。
(1)箱Aから玉を1個取り出し、それを箱Bに入れた後、箱Bから玉を1個取り出すとき、それが赤玉である確率を求めよ。
(2)箱Aから玉を2個取り出し、それを箱Bに入れた後、箱Bから玉を2個同時に取り出すとき、それらが2個とも赤玉である確率を求めよ。
この動画を見る 

【数A】【場合の数と確率】確率の条件から未知数の決定 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1つのつぼに赤玉と白玉が合計10個入っている。このつぼから1個の玉を取り出し、それをつぼに戻さずにまた1個の玉を取り出す。このとき、取り出される2個の玉がともに赤玉である確率は7/15であるという。このつぼに初め赤玉は何個入っているか。
この動画を見る 

【小6算数手元解説】受験算数 逆に買った①【問題文は概要欄】

アイキャッチ画像
単元: #算数(中学受験)#文章題#平均算・過不足算・差集め算・消去算
教材: #中学受験教材#6年算数D-支援
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個70円のりんごと、1個30円のみかんを合わせて18個買うつもりが、りんごとみかんの数を逆に買ってしまったので予定より80円高くなりました。はじめに予定していた金額は何円ですか。
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ5 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
1.4次関数$y=f(x)$のグラフの2つの変曲点の座標は
$(-1,1),(1,8)$であり、点$(1,8)$における接線は
直線$y=x$に平行である。関数$f(x)$を求めよ。
2.$a$は定数とする。
曲線$y=(x^2+2x+a)e^x$の変曲点の個数を調べよ
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ4 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
1.関数$y=-x^3+3x^2$のグラフはただ1つの変曲点をもち、
その点に関して対象であることを示せ。
2.関数$y=x^3+3ax^2+3bx+c$は$x=1$で極小となり、
点$(0,3)$はそのグラフの変曲点である。定数$a,b,c$の値を求めよ。
3.右の図は、関数$y=ax^3+bx^2+cx+d~~(0< x <5)$のグラフで、
$x=2$で極大、$x=4$で極小となり、点$(3,5)$は変曲点である。
定数$a,b,c,d$を求めずに、次のものを求めよ。
(1) $y' > 0$となる$x$の値の範囲
(2) $y'' > 0$となる$x$の値の範囲
(3) $y'$が最小となる$x$の値
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ3 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数$f(x)$について、$f'(0)=f''(0)=0$であることを示せ。
また、$f(x)$は$x=0$で極値をとるかどうかを調べよ。
(1) $f(x)=x^4$
(2) $f(x)=x^2\sin x$
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ2 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフの概形をかけ。
(1) $y=\dfrac{x^3}{x^2-4}$
(2) $y=x+\sqrt{1-x^2}$
(3) $y=x\sqrt{1-x^2}$
(4) $y=e^{\frac1x}$
(5) $y=e^{-x}\cos x\quad (0\leqq x \leqq 2\pi)$
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ1 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線の漸近線の方程式を求めよ。
(1) $y=\dfrac{x}{\sqrt{x^2+1}}$
(2) $y=2x+\sqrt{x^2-1}$
この動画を見る 

【高校数学】京都大学の定積分の問題は半角の公式で攻略できた!

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
■【京都大学 2025】
次の定積分の値を求めよ。
$\displaystyle \int_0^{\frac{π}{2}}\sqrt{\frac{1-cosx}{1+cosx}}dx$
この動画を見る 

【数A】【図形の性質】空間図形の応用3 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
立方体の各面の対角線の交点を頂点とし、
隣り合った面どうしの頂点を結ぶことによって、
立方体の中に正八面体ができる。
このとき、次の場合について、
正八面体の体積を求めよ。
(1) 立方体の1辺の長さが 10
(2) 正八面体の1辺の長さが6

一辺の長さが5の正八角形について、
次のものを求めよ。
(1) 正八角形の体積V
(2) 正八角形に内接する球の半径r
この動画を見る 

【数A】【図形の性質】空間図形の応用2 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCD において,辺AB と辺CDが垂直ならば,頂点Aから平面BCDに下ろした垂線AHと,頂点Bから平面CDAに下ろした垂線BKは交わることを示せ。ただし,HとB,KとAはそれぞれ一致しないものとする。

直方体 ABCD-EFGHにおいて,
辺AB,AD,AEの長さをそれぞれa,b,cとする。
また,頂点Aから直線FHに下ろした垂線をAK とする。
このとき,次の問いに答えよ。
(1) EK⊥FHであることを証明せよ。
(2) 垂線AKの長さを求めよ。
この動画を見る 

【数A】【図形の性質】空間図形の応用1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間内の異なる2つの直線ℓ 、m と異なる2つの平面α,βについて,
次の記述は常に正しいか。
(1) ℓ⊥α、m⊥αならば、ℓ⊥mである。
(2) ℓ⊥α、m⊥αならば、α//βである。
(3) ℓ//α、m//αならば、ℓ//mである。
(4) ℓ//α、m⊥αならば、ℓと並行でmと垂直な直線がある。

正六角柱を底面に
平行でない1つの平面で切ったものである。
六角形ABCDEF について,
辺AB と平行な辺を答えよ。

立方体について、次の問いに答えよ。
(1) 辺BF と垂直な面をすべて答えよ。
(2) 平面 BFHD と平行な辺をすべて答えよ。
(3) この立方体に,平行な位置関係にある面は何組あるか。
(4) 平面ABGHと垂直な面をすべて答えよ。
この動画を見る 

【数A】【図形の性質】作図の応用 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
線分ABが与えられたとき, 線分ABを斜辺とし, ∠BAC=60° である直角三角形ABC を作図せよ。

右の図のような円があり,その周上に点Aがある。
Aを頂点の1つとし、他の5つの頂点がいずれもこの円周上にあるような正六角形を作図せよ。

右の図のように,直線と円Oおよびその中心が与えられている。
直線lに平行な円Oの接線を作図せよ。
この動画を見る 

【数A】【図形の性質】円の位置関係 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のように,数直線上の原点を中心とする半径3の円Oと、
この数直線上を動く点Pを中心とする半径2の円Pがある。
Pの座標をtとするとき,次の件を満たすとの値,またはtの値の範囲を求めよ。
(1) 2円O,Pの共通接線が4本引ける。
(2) 2円O,Pの共有点が1個である。
(3) 2円O,Pの共通接線が、座標が6である数直線上の点Aを通る。

図のように,半径3の外接する2円A, B
が、半径8の円Oに内接している。2円A, B
に外接し,円Oに内接する円Cの半径を求めよ。
この動画を見る 

【小6算数手元解説】受験算数 過不足算⑦【問題文は概要欄】

アイキャッチ画像
単元: #算数(中学受験)#文章題#平均算・過不足算・差集め算・消去算
教材: #SPX#中学受験教材#6年算数D-支援
指導講師: 理数個別チャンネル
問題文全文(内容文):
生徒を講堂に集め、備え付けのベンチにかけさせることにします。どのベンチにも3人ずつかけさせると、17人がかけられません。そこで、ベンチ1脚に4人ずつかけさせていったら、1人もかけていないベンチが31脚余りました。生徒は何人いますか。(考えられるだけ求めなさい。)
この動画を見る 

【高校日本史】藤原仲麻呂(恵美押勝)の一生を辿る

アイキャッチ画像
単元: #社会(高校生)#日本史#原始・古代
指導講師: 理数個別チャンネル
問題文全文(内容文):
藤原 仲麻呂(恵美押勝)の一生を辿った動画です!
流れが分かりやすくまとめられており記憶に残る動画になっています!
この動画を見る 

【小6算数手元解説】受験算数 過不足算⑤【問題文は概要欄】

アイキャッチ画像
単元: #算数(中学受験)#文章題#平均算・過不足算・差集め算・消去算
教材: #SPX#中学受験教材#6年算数D-支援
指導講師: 理数個別チャンネル
問題文全文(内容文):
エンピツが奇数本とノートが100冊あります。あるクラスの生徒全員に、エンピツを1人に5本ずつ配ると40本余り、1人に7本ずつ配ると10本より多く不足します。また、ノートを1人に3冊ずつ配ると13冊より多く余ります。このクラスの生徒の人数は何人ですか。また、エンピツの本数は何本ですか。
この動画を見る 

【数Ⅱ】【式と証明】不等式の証明8 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)a>0のとき、a+16/a の最小値を求めよ。
(2)a>0のとき、(a+1/a)(a+16/a) の最小値を求めよ。
(3)a>0 ,b>0 ,ab=12のとき、a+b の最小値を
求めよ。
(4)a>0 ,b>0 ,$2a+3b=4\sqrt{2}$ のとき、abの最大値を求めよ。
この動画を見る 

【数Ⅱ】【式と証明】不等式の証明7 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>0,b>0,c>0のとき、(a+b)(b+c)(c+a)≧8abc が成り立つことを証明せよ。また、等号が成り立つのはどのようなときか。
この動画を見る 

【数Ⅱ】【式と証明】不等式の証明6 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0<a<b$ ,$a+b=2$のとき、$1$ ,$ab$ ,$a^2+b^2$ を小さい方から順に並べよ。
この動画を見る 

【数Ⅱ】【式と証明】不等式の証明5 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>0 ,b>0のとき、$\sqrt{ab}$ , $\displaystyle \frac{2ab}{a+b}$ の大小関係を調べよ。
この動画を見る 
PAGE TOP