理数個別チャンネル
理数個別チャンネル
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
【数Ⅰ】【2次関数】2次関数の点の通過 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たす放物線の方程式を求めよ。
(1) 3点(-4,0),(-2,0),(0,-4)を通る。
(2) 点(2,0)でx軸に接し、点(-2,12)を通る。
a,b,cの値を入力すると、関数 y=ax²+bx+c のグラフが表示されるコンピュータソフトがある。
あるa,b,cの値を入力すると、グラフは図のように表示された。
(1) a, b, c, b²-4ac, a+b+c の符号をいえ。
(2) このa,bの値を変えずに、cの値だけを変化させたとき、変わらないものを次の中からすべて選べ。
また、変わらない理由を説明せよ。
① グラフとx軸の共有点の個数
② グラフの頂点のx座標の符号
③ グラフの頂点のy座標の符号
この動画を見る
次の条件を満たす放物線の方程式を求めよ。
(1) 3点(-4,0),(-2,0),(0,-4)を通る。
(2) 点(2,0)でx軸に接し、点(-2,12)を通る。
a,b,cの値を入力すると、関数 y=ax²+bx+c のグラフが表示されるコンピュータソフトがある。
あるa,b,cの値を入力すると、グラフは図のように表示された。
(1) a, b, c, b²-4ac, a+b+c の符号をいえ。
(2) このa,bの値を変えずに、cの値だけを変化させたとき、変わらないものを次の中からすべて選べ。
また、変わらない理由を説明せよ。
① グラフとx軸の共有点の個数
② グラフの頂点のx座標の符号
③ グラフの頂点のy座標の符号
【数Ⅰ】【2次関数】2次関数のグラフ応用 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の2次関数のグラフがx軸から切り取る線分の長さを求めよ。
(1) y=x²-2x-8 (2) y=x²+6x+7
2次関数 y=x²-4x+2m のグラフとx軸の共有点の個数は,定数 m の値によってどのように変わるか。
この動画を見る
次の2次関数のグラフがx軸から切り取る線分の長さを求めよ。
(1) y=x²-2x-8 (2) y=x²+6x+7
2次関数 y=x²-4x+2m のグラフとx軸の共有点の個数は,定数 m の値によってどのように変わるか。
【解答速報・全問解説】2025年2月1日 専修大学 全国入試 数学解答速報【理数大明神】

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大学入試解答速報#数学#専修大学#専修大学
指導講師:
理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2025年2月1日(土)に実施された、専修大学の数学の入試問題の解答速報です。著作権の関係で問題を映せないため、お手元に問題をご用意した上でご覧ください。
当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。
解答だけ知りたい方はこちらから
https://note.com/kobetsu_teacher/n/n2062504ab208
この動画を見る
こちらの動画は、2025年2月1日(土)に実施された、専修大学の数学の入試問題の解答速報です。著作権の関係で問題を映せないため、お手元に問題をご用意した上でご覧ください。
当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。
解答だけ知りたい方はこちらから
https://note.com/kobetsu_teacher/n/n2062504ab208
【解答速報・全問解説】2025年2月1日 東京都市大学 物理解答速報【NI・SHI・NO】

単元:
#物理#大学入試過去問(物理)#理科(高校生)#大学入試解答速報#物理#東京都市大学#東京都市大学
指導講師:
理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2025年2月1日(土)に実施された、東京都市大学の物理の入試問題の解答速報です。著作権の関係で問題を映せないため、お手元に問題をご用意した上でご覧ください。
当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。
■解答
第1問 (1)3 (2)6 (3)1 (4)2 (5)5 (6)5
第2問 (7)3 (8)2 (9)5 (10)6 (11)4 (12)3
第7問 問1.2l/3 問2.8mg/3 問3.4mg/3sinθ 問4.8mg/3 問5.1/2tanθ'
この動画を見る
こちらの動画は、2025年2月1日(土)に実施された、東京都市大学の物理の入試問題の解答速報です。著作権の関係で問題を映せないため、お手元に問題をご用意した上でご覧ください。
当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。
■解答
第1問 (1)3 (2)6 (3)1 (4)2 (5)5 (6)5
第2問 (7)3 (8)2 (9)5 (10)6 (11)4 (12)3
第7問 問1.2l/3 問2.8mg/3 問3.4mg/3sinθ 問4.8mg/3 問5.1/2tanθ'
【受験算数】ニュートン算 おもちゃの検品作業 【問題文は概要欄】

単元:
#算数(中学受験)#文章題#仕事算とニュートン算
教材:
#SPX#5年算数D-支援#中学受験教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
ある工場の製造ラインでは、毎分同じ個数のおもちゃができあがります。できあがったおもちゃがある一定の個数がたまると、1人あたり毎分12個ずつ検品できる人たちで検品作業を始めます。6人で検品すると35分で作業が終わります。また、4人で検品すると55分で作業が終わります。
(1) 毎分何個のおもちゃができあがりますか。
(2) 検品作業を始めるのは、できあがったおもちゃが何個たまったときですか。
(3) 77分で作業を終わらせるには、何人で検品すればよいですか。
この動画を見る
ある工場の製造ラインでは、毎分同じ個数のおもちゃができあがります。できあがったおもちゃがある一定の個数がたまると、1人あたり毎分12個ずつ検品できる人たちで検品作業を始めます。6人で検品すると35分で作業が終わります。また、4人で検品すると55分で作業が終わります。
(1) 毎分何個のおもちゃができあがりますか。
(2) 検品作業を始めるのは、できあがったおもちゃが何個たまったときですか。
(3) 77分で作業を終わらせるには、何人で検品すればよいですか。
【数Ⅰ】【2次関数】文字を含む2次方程式 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを定数とするとき,次の方程式を解け。
(1) a²x + 1 = a(x + 1)
(2) ax² + (a² - 1)x - a = 0
2つの2次方程式 x² + (m + 3)x + 8 = 0, x² + 5x + 4m = 0 が共通な実数解をもつように
定数mの値を定め, その共通な解を求めよ。
この動画を見る
aを定数とするとき,次の方程式を解け。
(1) a²x + 1 = a(x + 1)
(2) ax² + (a² - 1)x - a = 0
2つの2次方程式 x² + (m + 3)x + 8 = 0, x² + 5x + 4m = 0 が共通な実数解をもつように
定数mの値を定め, その共通な解を求めよ。
【数Ⅰ】【2次関数】2次関数の決定 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たすような放物線の方程式を求めよ。
(1) 放物線 y=-3x²+x-1を平行移動した曲線で,頂点が点(-2,3)である。
(2) 放物線 y=x²-3xを平行移動した曲線で,2点 (2,1),(4,5)を通る。
2つの放物線y=x²-3x, y=1/2x²+ax+bの頂点が一致するように,定数a,bの値を定めよ。
(1) 放物線y=x²-3x十4を平行移動した曲線で,点(2, 4)を通り,頂点が直線y=2x+1上にある放物線の方程式を求めよ。
(2) 放物線y=-2x²+5xを平行移動した曲線で,点(1, -3)を通り,頂点が放物線y=x²十4上にある放物線の方程式を求めよ。
この動画を見る
次の条件を満たすような放物線の方程式を求めよ。
(1) 放物線 y=-3x²+x-1を平行移動した曲線で,頂点が点(-2,3)である。
(2) 放物線 y=x²-3xを平行移動した曲線で,2点 (2,1),(4,5)を通る。
2つの放物線y=x²-3x, y=1/2x²+ax+bの頂点が一致するように,定数a,bの値を定めよ。
(1) 放物線y=x²-3x十4を平行移動した曲線で,点(2, 4)を通り,頂点が直線y=2x+1上にある放物線の方程式を求めよ。
(2) 放物線y=-2x²+5xを平行移動した曲線で,点(1, -3)を通り,頂点が放物線y=x²十4上にある放物線の方程式を求めよ。
【数Ⅰ】【2次関数】2次関数の最大と最小条件式付き ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1) 2x+y=1のとき,x²+y²の最小値を求めよ。
(2) x+2y+3=0のとき,xyの最大値を求めよ。
x≧0, y≧0, x+y=4のとき,xのとりうる値の範囲を求めよ。また、x²+2y²の最大値と最小値を求めよ。
この動画を見る
(1) 2x+y=1のとき,x²+y²の最小値を求めよ。
(2) x+2y+3=0のとき,xyの最大値を求めよ。
x≧0, y≧0, x+y=4のとき,xのとりうる値の範囲を求めよ。また、x²+2y²の最大値と最小値を求めよ。
【数C】【平面上のベクトル】ベクトルの基本計算4 ※問題文は概要欄

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
四角形ABCDについて、次のことを証明せよ。
四角形ABCDが平行四辺形である ⇔ $\overrightarrow{ AC }+\overrightarrow{ BD }=2\overrightarrow{ AD }$
この動画を見る
四角形ABCDについて、次のことを証明せよ。
四角形ABCDが平行四辺形である ⇔ $\overrightarrow{ AC }+\overrightarrow{ BD }=2\overrightarrow{ AD }$
【数C】【平面上のベクトル】ベクトルの基本計算3 ※問題文は概要欄

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
平行四辺形ABCDの辺$\overrightarrow{ AB }=\vec{ a }$,$\overrightarrow{ AD }=\vec{ b }$ , $\overrightarrow{ AE }=\vec{ u }$ ,$\overrightarrow{ AF }=\vec{ v }$ とするとき、$\vec{ a }$ ,$\vec{ b }$ を $\vec{ u }$ ,$\vec{ v }$ を用いて表せ。
BCの中点をE、辺CD上の点でCF:FD=3:2 を満たす点をFとする。
この動画を見る
平行四辺形ABCDの辺$\overrightarrow{ AB }=\vec{ a }$,$\overrightarrow{ AD }=\vec{ b }$ , $\overrightarrow{ AE }=\vec{ u }$ ,$\overrightarrow{ AF }=\vec{ v }$ とするとき、$\vec{ a }$ ,$\vec{ b }$ を $\vec{ u }$ ,$\vec{ v }$ を用いて表せ。
BCの中点をE、辺CD上の点でCF:FD=3:2 を満たす点をFとする。
【高校物理】x-tグラフ【毎週土曜日16時更新!】

単元:
#物理#力学#理科(高校生)
教材:
#中高教材#セミナー物理基礎・物理
指導講師:
理数個別チャンネル
問題文全文(内容文):
図は、x軸上を運動している物体の位置x(m)と時刻t(s)との関係を示したx-tグラフである。物体の速さはいくらか。
この動画を見る
図は、x軸上を運動している物体の位置x(m)と時刻t(s)との関係を示したx-tグラフである。物体の速さはいくらか。
【高校化学】芳香族化合物の分離操作【毎週土曜日16時更新!】

単元:
#化学#有機#理科(高校生)
教材:
#中高教材#セミナー化学基礎・化学
指導講師:
理数個別チャンネル
問題文全文(内容文):
安息香酸、アニリン、ニトロベンゼン、フェノールを溶かしたエーテル溶液がある。この溶液に図のような操作を行ったところ,A~Dにそれぞれ
1種類ずつ芳香族化合物を分離できた。
(1) A~Dに含まれる芳香族化合物の名称を記せ。
(2)水槽①および② に含まれる芳香族化合物の塩の名称と構造式を記せ。
(3) ナフタレンに図と同様の操作を行うと,A~Dのどこに含まれるか。
この動画を見る
安息香酸、アニリン、ニトロベンゼン、フェノールを溶かしたエーテル溶液がある。この溶液に図のような操作を行ったところ,A~Dにそれぞれ
1種類ずつ芳香族化合物を分離できた。
(1) A~Dに含まれる芳香族化合物の名称を記せ。
(2)水槽①および② に含まれる芳香族化合物の塩の名称と構造式を記せ。
(3) ナフタレンに図と同様の操作を行うと,A~Dのどこに含まれるか。
【受験算数】ニュートン算 何分前に並んだ? 【問題文は概要欄】

単元:
#算数(中学受験)#文章題#仕事算とニュートン算
教材:
#SPX#5年算数D-支援#中学受験教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
ある駅の窓口に。記念切符を買いたい人たちが、毎分4人の割合で並んで行列を作っています。もしも午前10時30分から1つの発売窓口をあけると、午前11時18分に行列がなくなります。また、もしも午前10時30分から2つの発売窓口をあけると、午前10時50分に行列がなくなります。行列ができ始めたのは午前何時何分ですか。
この動画を見る
ある駅の窓口に。記念切符を買いたい人たちが、毎分4人の割合で並んで行列を作っています。もしも午前10時30分から1つの発売窓口をあけると、午前11時18分に行列がなくなります。また、もしも午前10時30分から2つの発売窓口をあけると、午前10時50分に行列がなくなります。行列ができ始めたのは午前何時何分ですか。
【数C】【平面上のベクトル】ベクトルの基本計算2 ※問題文は概要欄

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)$\overrightarrow{ OA }=2\vec{ a }$ ,$\overrightarrow{ OA }=3\vec{ b } $ ,$\overrightarrow{ OP }=6\vec{ b }-4\vec{ a }$ であるとき、
$\overrightarrow{ OP }//\overrightarrow{ AB }$ であることを示せ。ただし、$\vec{ a }≠0$ ,$\vec{ b }≠0$ で、$\vec{ a }$ と $\vec{ b }$ は平行でないとする。
(2)$\overrightarrow{ OA }=\vec{ a }$ ,$\overrightarrow{ OB }=\vec{ b }$ ,$\overrightarrow{ OP }=3\vec{ a }-2\vec{ b }$ ,$\overrightarrow{ OQ }=3\vec{ a }$である
とき、$\overrightarrow{ PQ }//\overrightarrow{ OB }$ であることを示せ。ただし、$\vec{ a }≠0$ , $\vec{ b }≠0$ で、$\vec{ a }$ と $\vec{ b }$ は平行でないとする。
この動画を見る
(1)$\overrightarrow{ OA }=2\vec{ a }$ ,$\overrightarrow{ OA }=3\vec{ b } $ ,$\overrightarrow{ OP }=6\vec{ b }-4\vec{ a }$ であるとき、
$\overrightarrow{ OP }//\overrightarrow{ AB }$ であることを示せ。ただし、$\vec{ a }≠0$ ,$\vec{ b }≠0$ で、$\vec{ a }$ と $\vec{ b }$ は平行でないとする。
(2)$\overrightarrow{ OA }=\vec{ a }$ ,$\overrightarrow{ OB }=\vec{ b }$ ,$\overrightarrow{ OP }=3\vec{ a }-2\vec{ b }$ ,$\overrightarrow{ OQ }=3\vec{ a }$である
とき、$\overrightarrow{ PQ }//\overrightarrow{ OB }$ であることを示せ。ただし、$\vec{ a }≠0$ , $\vec{ b }≠0$ で、$\vec{ a }$ と $\vec{ b }$ は平行でないとする。
【数C】【平面上のベクトル】ベクトルの基本計算1 ※問題文は概要欄

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の等式を同時に満たすベクトル $\vec{ x }$ ,$\vec{ y }$を $\vec{ a }$ ,$\vec{ b }$を用いて表せ。
(1)
$2\vec{ x }+\vec{ y }=\vec{ a } $
$\vec{ x }-\vec{ y }=\vec{ b }$
(2)
$2\vec{ b }-3\vec{ y }=\vec{ a }+\vec{ b }$
$\vec{ x }+\vec{ y }=\vec{ a }-\vec{ b }$
この動画を見る
次の等式を同時に満たすベクトル $\vec{ x }$ ,$\vec{ y }$を $\vec{ a }$ ,$\vec{ b }$を用いて表せ。
(1)
$2\vec{ x }+\vec{ y }=\vec{ a } $
$\vec{ x }-\vec{ y }=\vec{ b }$
(2)
$2\vec{ b }-3\vec{ y }=\vec{ a }+\vec{ b }$
$\vec{ x }+\vec{ y }=\vec{ a }-\vec{ b }$
【数Ⅰ】【図形と計量】正弦、余弦定理応用2 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$△ABC$において,
$\dfrac{\sin A}{13}=\dfrac{\sin B}{8}=\dfrac{\sin C}{7}$
が成り立つとき,次のものを求めよ。
(1) 最も大きい角の大きさ (2) 最も小さい角の正接
この動画を見る
$△ABC$において,
$\dfrac{\sin A}{13}=\dfrac{\sin B}{8}=\dfrac{\sin C}{7}$
が成り立つとき,次のものを求めよ。
(1) 最も大きい角の大きさ (2) 最も小さい角の正接
【数Ⅰ】【図形と計量】正弦、余弦定理応用1 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$△ABC$において,$a:b=(1+\sqrt{3}):2$,外接円の半径 $R=1$,$C=60°$のとき,$a,b,c,A,B$を求めよ。
この動画を見る
$△ABC$において,$a:b=(1+\sqrt{3}):2$,外接円の半径 $R=1$,$C=60°$のとき,$a,b,c,A,B$を求めよ。
【数Ⅰ】【図形と計量】余弦定理応用4 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$△ABC$において,次のものを求めよ。
(1) $\sin A: \sin B:\sin C=5:8:7$ のとき,$\cos C,C$
(2) $(b+c):(c+a):(a+b)=4:5:6$のとき$A$
(3) $A:B:C=5:4:8$のとき $A, B, C, b:c$
この動画を見る
$△ABC$において,次のものを求めよ。
(1) $\sin A: \sin B:\sin C=5:8:7$ のとき,$\cos C,C$
(2) $(b+c):(c+a):(a+b)=4:5:6$のとき$A$
(3) $A:B:C=5:4:8$のとき $A, B, C, b:c$
【数Ⅰ】【図形と計量】余弦定理の利用 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
△ABCにおいて,c²=a²+b²-abのとき,Cを求めよ。更に,a=3,c=√7のとき,bを求めよ。
この動画を見る
△ABCにおいて,c²=a²+b²-abのとき,Cを求めよ。更に,a=3,c=√7のとき,bを求めよ。
【数Ⅰ】【図形と計量】平行四辺形 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
平行四辺形ABCDにおいて,AB=3,AD=5,∠B=60°のとき,対角線AC,BDの長さを求めよ。
この動画を見る
平行四辺形ABCDにおいて,AB=3,AD=5,∠B=60°のとき,対角線AC,BDの長さを求めよ。
【受験算数】ニュートン算 肥料を運び出す 【問題文は概要欄】

単元:
#算数(中学受験)#文章題#仕事算とニュートン算
教材:
#SPX#5年算数D-支援#中学受験教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
毎時間同じ量の肥料を休まずに生産している工場があります。いま、450tの肥料がたまったところで、15台のトラックで運び出したら、ちょうど9時間て肥料がなくなったので、運び出すのを止めました。しばらくして、350tの肥料がたまったところで、今度は12台のトラックで運び出したら、ちょうど10時間で肥料がなくなりました。200tの肥料がたまったところで、9台のトラックで運び出すと、何時間で肥料がなくなりますか。ただし、どのトラックも1時間で運び出す肥料の量は同じです。
この動画を見る
毎時間同じ量の肥料を休まずに生産している工場があります。いま、450tの肥料がたまったところで、15台のトラックで運び出したら、ちょうど9時間て肥料がなくなったので、運び出すのを止めました。しばらくして、350tの肥料がたまったところで、今度は12台のトラックで運び出したら、ちょうど10時間で肥料がなくなりました。200tの肥料がたまったところで、9台のトラックで運び出すと、何時間で肥料がなくなりますか。ただし、どのトラックも1時間で運び出す肥料の量は同じです。
【数Ⅰ】【図形と計量】余弦定理応用3 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\triangle \mathrm{ABC}$において、$a=2,b=\sqrt{6},c=\sqrt{3}-1,A=45 ^\circ$のとき、次の問いに答えよ。
(1) 正弦定理を用いて、$\sin B$ の値を求めよ。
(2) (1)の$\sin B$ の値から、$B$ の候補として$2$ つ考えられるが、そのうち$1$ つは不適である。その理由を説明せよ。
この動画を見る
$\triangle \mathrm{ABC}$において、$a=2,b=\sqrt{6},c=\sqrt{3}-1,A=45 ^\circ$のとき、次の問いに答えよ。
(1) 正弦定理を用いて、$\sin B$ の値を求めよ。
(2) (1)の$\sin B$ の値から、$B$ の候補として$2$ つ考えられるが、そのうち$1$ つは不適である。その理由を説明せよ。
【数Ⅰ】【図形と計量】余弦定理応用2 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
a=4,b=5,c=6 である△ABCにおいて,最も大きい角の余弦を求めよ。また,余弦が最も大きい角はどの角か。
この動画を見る
a=4,b=5,c=6 である△ABCにおいて,最も大きい角の余弦を求めよ。また,余弦が最も大きい角はどの角か。
【数Ⅰ】【図形と計量】余弦定理応用1 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の各場合について,△ABC の残りの辺の長さと角の大きさを求めよ。
(1) b=3,c=√3,B=60°
(2) b=2√3,c=2,C=30°
この動画を見る
次の各場合について,△ABC の残りの辺の長さと角の大きさを求めよ。
(1) b=3,c=√3,B=60°
(2) b=2√3,c=2,C=30°
【数Ⅰ】【図形と計量】余弦定理を使った証明 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
△ABC において,次のことが成り立つことを正弦定理を利用して証明せよ。
b<c⇒B<C
この動画を見る
△ABC において,次のことが成り立つことを正弦定理を利用して証明せよ。
b<c⇒B<C
【受験算数】ニュートン算 初めの量がわからない 牛が草を食べる1 【問題文は概要欄】

単元:
#算数(中学受験)#文章題#仕事算とニュートン算
教材:
#SPX#5年算数D-支援#中学受験教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
ある牧場に、毎日一定の割合で草が伸びる放牧場があります。この放牧場で、もし、牛43頭を放し飼いにすると125日で生えている草がなくなります。また、もし、牛54頭を放し飼いにすると100日で生えている
草がなくなります。この放牧場で、放牧開始から150日で生えている草がなくなるようにするには、牛を何頭放し飼いにすればよいですか。
この動画を見る
ある牧場に、毎日一定の割合で草が伸びる放牧場があります。この放牧場で、もし、牛43頭を放し飼いにすると125日で生えている草がなくなります。また、もし、牛54頭を放し飼いにすると100日で生えている
草がなくなります。この放牧場で、放牧開始から150日で生えている草がなくなるようにするには、牛を何頭放し飼いにすればよいですか。
【数Ⅰ】【図形と計量】三角比の値 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$0°\leqq\theta\leqq 180°$とする。$\sin\theta-\cos\theta=\dfrac{1}{3}$のとき,$\sin\theta\cos\theta$の値を求めよ。
この動画を見る
$0°\leqq\theta\leqq 180°$とする。$\sin\theta-\cos\theta=\dfrac{1}{3}$のとき,$\sin\theta\cos\theta$の値を求めよ。
【数Ⅰ】【図形と計量】三角比の値域 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の式のとりうる値の範囲を求めよ。(1)~(4)では$0°\leqq\theta\leqq 180°$とする。
(1) $sin\theta+2$ (2) $2\cos\theta$ (3) $2\sin\theta-1$ (4) $-3\cos\theta+1$ (5) $2\tan\theta+1$ ($0°\leqq0\leqq 60°$)
(6)$\tan\theta+1$ ($30°\leqq 0\lt 90°$)
この動画を見る
次の式のとりうる値の範囲を求めよ。(1)~(4)では$0°\leqq\theta\leqq 180°$とする。
(1) $sin\theta+2$ (2) $2\cos\theta$ (3) $2\sin\theta-1$ (4) $-3\cos\theta+1$ (5) $2\tan\theta+1$ ($0°\leqq0\leqq 60°$)
(6)$\tan\theta+1$ ($30°\leqq 0\lt 90°$)
【数Ⅰ】【図形と計量】三角比の変換応用 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の式の値を簡単にせよ。
(1) sin10°cos80°-sin100°cos170°
(2) 1/(1+sin²20°)-tan²110°
(3) sin²(180°-θ)+sin²(90°-θ)+sin²(90°+θ)+cos²(90°-θ)
この動画を見る
次の式の値を簡単にせよ。
(1) sin10°cos80°-sin100°cos170°
(2) 1/(1+sin²20°)-tan²110°
(3) sin²(180°-θ)+sin²(90°-θ)+sin²(90°+θ)+cos²(90°-θ)
【数Ⅰ】【図形と計量】2直線のなす角 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の2直線のなす鋭角θを求めよ。
(1) $y=-\sqrt{3}x, y=-x$
(2) $y=-\frac{1}{\sqrt{3}}x, y=x$
この動画を見る
次の2直線のなす鋭角θを求めよ。
(1) $y=-\sqrt{3}x, y=-x$
(2) $y=-\frac{1}{\sqrt{3}}x, y=x$
