理数個別チャンネル - 質問解決D.B.(データベース) - Page 32

理数個別チャンネル

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

担当科目:【小中高生対象】算数、数学、理科、英語、他

理数個別指導学院の講師陣が運営する、小・中・高生対象の「算数・数学・理科・英語」の問題や単元のピンポイント解説動画コンテンツです。
分からなくて困っている単元や問題文の一部を「知恵袋」感覚で是非検索してみてください。
「ほぼ毎日」更新中です!!

【数A】【整数の性質】ユークリッドの互除法図形を用いる問題 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
縦の長さが864,横の長さが1357である長方形において,長方形をできるだけ大きい正方形で切り取れるだけ切り取る。残った部分の長方形も同様に,その長方形をできるだけ大きい正方形で切り取れるだけ切り取る。この作業を,最初の長方形がすべて正方形で切り取られるまで繰り返す。
(1)最初に切り取られる正方形の1辺の長さを求めよ。また,残った部分の短辺の長さを求めよ。
(2)切り取られた正方形のうち,最も小さい正方形の面積を求めよ。
(3)切り取られた正方形は何種類か。
(4)切り取られた正方形の個数を求めよ。

縦の長さが1,横の長さが$\sqrt{3}$である長方形ABCDにおいて,長方形をできるだけ大きい正方形で切り取れるだけ切り取る。残った部分の長方形も同様に,その長方形をできるだけ大きい正方形で切り取れるだけ切り取る。右の図はこの作業を何回か繰り返したときの図である。この図の中にある長方形で,長方形ABCDと相似である長方形を見つけ,それを用いて$\sqrt{3}$が無理数であることを証明せよ。
この動画を見る 

【数A】【整数の性質】素因数分解、素数について ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
nは自然数とする。2310/nが素数となるnは何個あるか。

nは自然数とする。n²-14n+40が素数となるようなnをすべて求めよ。

次の問いに答えよ。
(1)(ア)5以上の素数を小さい方から順に10個あげよ。
(イ)(ア)であげた素数から予想できることについて,下の文章の□に当てはまる自然数のうち,最大のものを求めよ。ただし,□には同じ自然数が入るものとする。
5以上の素数は,□の倍数から1引いた数か,□の倍数に1足した数である。
(2)(1)(イ)の予想が正しいことを証明せよ。
この動画を見る 

【受験算数】ニュートン算の基本 入れる・出す・減る【問題文は概要欄】

アイキャッチ画像
単元: #算数(中学受験)#文章題#仕事算とニュートン算
教材: #SPX#5年算数D-支援#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の(1)~(4)の□にあてはまる数を答えなさい。
(1) 給水管と排水管がついている水そうがあり、1200Lの水が入っています。いま。 給水管からは毎分15L.排水管からは毎分40Lの水を流します。水そうが空 になるのは□分後です。
(2) 給水管と排水管がついている水そうがあり、□Lの水が入っています。給 水管からは毎分20L、排水管からは毎分50Lの水を流すと、水そうが空にな るのは15分後です。
(3) 給水管と排水管がついている水そうがあり、120Lの水が入っています。給水管からは毎分□L、排水管からは毎分25Lの水を流すと、水そうが空にな るのは10分後です。
(4) 給水管と排水管がついている水そうがあり、1920Lの水が入っています。給 水管からは毎分2L、排水管からは毎分□Lの水を流すと、水そうが空に なるのは40分後です。
この動画を見る 

【数A】【整数の性質】素因数分解を利用する問題 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような自然数の個数を求めよ。
(1)108以下の自然数で,108と互いに素である自然数
(2)600以下の自然数で,600と互いに素である自然数

(1)1から240までの240個の自然数の積N=1・2・3・・・240について,Nを素因数分解したとき,素因数3の個数を求めよ。
(2)1から450までの450個の自然数の積N=1・2・3・・・450について,Nを素因数分解したとき,素因数7の個数を求めよ。

次のような自然数の積Nを計算すると,末尾には0が連続して何個並ぶか
(1)1から125までの125個の自然数の積N=1・2・3・・・125
(2)1から300までの300個の自然数の積N=1・2・3・・・300
この動画を見る 

【数A】【整数の性質】最小公倍数、最大公約数の基本2 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
みかんが435個,りんごが268個ある。何人かの子どもに,みかんもりんごも平等に,できるだけ多く配ったところ,みかんは45個,りんごは34個余った。子どもの人数を求めよ。

(1)nは自然数で,n/20,n/42がともに自然数となるという。このようなnのうちで最も小さいものを求めよ。

(2)42/5, 21/10, 35/16,のいずれに掛けても積が自然数となる分数のうち,最も小さいものを求めよ。
この動画を見る 

【数A】【整数の性質】最小公倍数、最大公約数の基本1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
nは正の整数とする。次のようなnをすべて求めよ。
(1)nと36の最小公倍数が504
(2)nと48の最小公倍数が720

3つの自然数40,56,nの最大公約数が8,最小公倍数が1400であるとき,nをすべて求めよ。

aは自然数とする。a+2は6の倍数であり,a+6は8の倍数であるとき,a+14は24の倍数であることを証明せよ
この動画を見る 

【受験算数】平面図形:合同な図形を探す 【洛南高附中2019】

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#平面図形#角度と面積#洛南高校附属中学
指導講師: 理数個別チャンネル
問題文全文(内容文):
図において、△AEGと△ACDは正三角形で、△FBCはFB=FCの二等辺三角形です。角アの大きさを求めなさい。
この動画を見る 

【受験算数】平面図形:折り返した図形 【大阪星光中2020】

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#平面図形#角度と面積#大阪星光学院中学
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のように、長方形の紙テープを2回折りました。角アの大きさを求めなさい。
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用6 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは定数とする。次の方程式の異なる実数解の個数を求めよ。

(2)では、必要ならば$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{e^x} =0$を用いてよい。

(1) $x^3-ax+2a$=0
(2) $2x-1=ae^{ -x }$
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用5 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のことが成り立つことを証明せよ。

$0≦x≦1$のとき

$1-x+x²e^x≦e^x≦1+x+\displaystyle \frac{1}{2}
x²e^x$
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用4 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x→∞$のとき、$y=x$が$y=\log x$と比較して、
より急速に増大すること、すなわち

$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{\log x} =\infty$

が成り立つことを証明せよ。

ただし、まずは次の①~③のどれか1つを証明し、それを利用せよ。

①$x≧4$のとき、$x^2>\log x$が成り立つ
②$x≧4$のとき、$x>\log x$が成り立つ
③$x≧4$のとき、$\sqrt{x}>\log x$が成り立つ
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用3 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
すべての正の数xに対して、

不等式$\sqrt{x}>a\log x$が成り立つような定数aの値の範囲を求めよ。
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用2 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
 次のことが成り立つことを証明せよ。

(1) $b≧a>0$のとき $logb-loga≧\displaystyle \frac{2(b-a)}{(b+a)}$

(2) $0<α<β≦\displaystyle \frac{π}{2}$のとき $\displaystyle \frac{α}{β}<\displaystyle \frac{sin α}{sin β}$

この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用1 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
 $x>0$のとき、次の不等式を証明せよ。

(1) $sin x>x-\displaystyle \frac{x^2}{2}$

(2) $1-\displaystyle \frac{x}{2}<\displaystyle \frac{1}{\sqrt{1+x}}<1-\displaystyle \frac{x}{2}+\displaystyle \frac{3x^2}{8}$
この動画を見る 

【受験算数】平面図形:正五角形と正六角形 【早稲田中2021】

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#平面図形#角度と面積#早稲田中学
指導講師: 理数個別チャンネル
問題文全文(内容文):
図は正六角形1つと、正五角形2つを並べたものです。角アの大きさを求めなさい。
この動画を見る 

【数C】【複素数平面】複素数の回転と三角形 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面上の3点O(0),A(2-i),Bについて、次の条件を満たしているとき、
点Bを表す複素数を求めよ。
(1)△OABが正三角形となる。(2)△OABがBを直角の頂点とする二等辺三角形になる。
この動画を見る 

【数C】【複素数平面】 極形式から三角比の値を求める ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
$1+i$、$\sqrt{3}+i$を極形式で表すことにより、$cos \displaystyle \frac{5π}{12}$と$sin \displaystyle \frac{5π}{12}$の値を求めよ。
この動画を見る 

【数C】【複素数平面】 極形式で表す ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を 極形式で表せ。ただし、偏角θは0≦θ<2πとする。

(1)$\displaystyle \frac{4+3i}{1+7i}$

(2)$\sqrt{3}+\displaystyle \frac{1-i}{1+i}$

(3)$ー4(\cos \displaystyle \frac{π}{6} + i\sin \displaystyle \frac{π}{6})$

(4)$cos\displaystyle \frac{2π}{3}ーisin \displaystyle \frac{2π}{3}$

(5)$2(sin \displaystyle \frac{π}{3} + i cos \displaystyle \frac{π}{3})$
この動画を見る 

【解答速報・全問解説】2025年 大学入学共通テスト 数学ⅡBC解答速報

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2025年1月19日(日)に実施された、2025年大学入学共通テストの数学ⅡBCの解答速報です。(LIVEで行った解答速報の抜粋版です)
当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。

指導講師:AKIYAMA、理数大明神、烈's study!、ゆう☆たろう
この動画を見る 

【解答速報・全問解説】2025年 大学入学共通テスト 数学ⅠA解答速報

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2025年1月19日(日)に実施された、2025年大学入学共通テストの数学ⅠAの解答速報です。(LIVEで行った解答速報の抜粋版です)
当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。

指導講師:AKIYAMA、理数大明神、烈's study!、ゆう☆たろう
この動画を見る 

【受験算数】平面図形:合同な図形を探す 【洛南高附中2021】

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#平面図形#角度と面積#洛南高校附属中学
指導講師: 理数個別チャンネル
問題文全文(内容文):
図において、AD=AB, AC=AEのとき、角アの大きさを求めなさい。
この動画を見る 

【解答速報・全問解説】2025年 大学入学共通テスト 化学解答速報【化学のタカシー】※6番、29番、33番に訂正あり

アイキャッチ画像
単元: #化学#大学入試過去問(化学)#共通テスト#理科(高校生)#大学入試解答速報#化学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2025年1月19日(日)に実施された、2025年大学入学共通テストの化学の解答速報です。(LIVEで行った解答速報の抜粋版です)
当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。

※6番訂正
10Lから8.3Lを引いて1.7Lのため、正解は①
※29番訂正
留出物A、B、Cは順にナフサ、灯油、軽油のため、正解は③
※33番訂正
正解は①
1550×2としていますが、2は不要のため、正解は①
この動画を見る 

【解答速報・全問解説】2025年 大学入学共通テスト 物理解答速報【理数大明神】

アイキャッチ画像
単元: #物理#大学入試過去問(物理)#理科(高校生)#大学入試解答速報#物理#共通テスト#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2025年1月19日(日)に実施された、2025年大学入学共通テストの物理の解答速報です。(LIVEで行った解答速報の抜粋版です)
当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。

※訂正
動画内で解説したもの、求めたものは「動体棒に発生する誘導起電力」を求めたものです。ただ、問題で求めるものでは「コイルに発生する誘導起電力」を求める問題でした。
考え方としては「十分時間経過しているので、電流の時間変化「ΔI/Δt」の値が0となります。そのため、コイルに発生する誘導起電力の公式V=-N (ΔI/Δt)に代入すると、V=0となりまして、⑦が正しい答えとなります

この動画を見る 

【受験算数】平面図形:合同な図形を探す 【四條畷学園中】

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#平面図形#角度と面積#四條畷学園中
指導講師: 理数個別チャンネル
問題文全文(内容文):
図において、AB=AC=AD=AE,BD=CEとなっています。このとき、角ア、角イの大きさをそれぞれ求めなさい。
この動画を見る 

【受験算数】平面図形:対称の軸の利用【早稲田実業中2021】

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#平面図形#角度と面積#早稲田実業中等部
指導講師: 理数個別チャンネル
問題文全文(内容文):
図で、四角形ABCDは正方形です。角アの大きさを求めなさい。
この動画を見る 

【数A】【場合の数と確率】確率の基本3 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$1$個のさいころを$3$回投げるとき, 次の確率を求めよ。
(1) 何回目かにその回の番号と同じ目が出る確率
(2) どの回にもその回の番号と同じ目が出ないで,しかも$1$の目が1回も出ない確率

ある試行における2つの事象 $A, B$について,$P(A)=0.5,P(B)=11$,
$P(A\cup B) = 0.6$ であるとき, 次の問いに答えよ。
(1)$ P(A \cap B),P(A \cap \overline{ B }), P(\overline{ A }∩B)$ を求めよ。
(2)$ A,B$のどちらか一方だけが起こる事象を,$ A, B, U, 0, \overline{ }$ を用いて表せ。また,その事象が起こる確率を求めよ。
この動画を見る 

【受験算数】平面図形:対称の軸の利用【青山学院中2021】

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#平面図形#角度と面積#青山学院中等部
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のように、正五角形の形をした折り紙があります。点Bと点Cが重なるように折り目ADをつけて戻した後、点Cが折り目AD上にくるように折りました。角アの大きさを求めなさい。
この動画を見る 

【受験算数】平面図形:折り返した図形【雲雀丘学園中2020】

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#平面図形#角度と面積#雲雀丘学園中学
指導講師: 理数個別チャンネル
問題文全文(内容文):
図は、正三角形の紙を①、②の順に2回折ったものです。角ア、角イの大きさをそれぞれ求めなさい。
この動画を見る 

【数学】2023年度 第4回 高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)AB=15, AC=7, ∠BAC=60°の△ABCがある。辺BCの長さと△ABCの内接円の半径を求めよ。
(2)aを実数の定数とする。xの2次方程式x2-ax-a-9=0が-2より小さい解と3より大きい解をもつようなの値の範囲を求めよ。
(3)方程式x3+3x2+2x-6=0を複素数の範囲で解け。
(4)座標平面上の直線y=x上の点で、直線x+2y-4=0までの距離が√5である点の座標をすべて求めよ。
(5)方程式4^(x+1)+7・2^x-2=0を解け。
(6)不等式log₂x+1≧log₂(2-x)を解け。

大問2:三角関数
aを正の定数とし、関数f(θ)をf(θ)=2sin²θ+2√3sinθcosθ+a(√3sinθ+cosθ)-6a²+1とする。
(1)√3sinθ+cosθをrsin(θ+α)の形に表せ。ただし、r>0,-π<α≦πとする。
(2)t=√3sinθ+cosθとおくとき、f(θ)をtの2次式で表せ。
(3)方程式f(θ)=0(0≦θ≦π)…(*)について考える。
(i)a=1のとき、(*)を解け。
(ii)(*)の異なる解の個数がちょうど2個となるようなaの値の範囲を求めよ。

大問3:場合の数
A,B,Cの3人を含む9人の生徒について考える。
(1)4人と5人の2つの組に分けるとき、分け方は何通りあるか。
(2)3人ずつ3つの組に分けるとき、
(i)分け方は全部で何通りあるか。
(ii)AとBが同じ組に入る分け方は何通りあるか。
(3)「9人を3人ずつ3つの班に分けて、それぞれの班で1人ずつ班長を選ぶこと」を班決めということにする。その際、AとBが同じ班に入るときAは班長になることができず、BとCが同じ班に入るときBは班長になることができないものとする。
(i)AとBが同じ班に入り、Cは別の班に入る班決めの仕方は何通りあるか。
(ii)班決めの仕方は全部で何通りあるか。

大問4:微分法
t>0とする。f(x)=x⁴-6x²とし、曲線C:y=f(x)上の点P(t,f(t))におけるCの接線をlとする。
(1)t=1のときのlの方程式を求めよ。また、このときlとCのP以外の共有点の座標を求めよ。
(2)lとCがP以外に異なる2つの共有点をもつようなtの値の範囲を求めよ。
(3)(2)のとき、lとCのP以外の2つの共有点をQ(α,f(α)), R(β,f(β))(a<β)とし、3点P, Q, RにおけるCの接線の傾きをそれぞれmP、mQ、mRとする。このとき、mP+mQ+mRのとり得る値の範囲を求めよ。

大問5:数列
数列{a[n]}(n=1,2,3,…)は公差が正の等差数列でa₁+a₂+a₃=-3. a₁a₃=-3を満たし、数列{b[n]}は
b₁=-1, b[n+1]=│b[n]│+a[n] (n=1,2,3,…)を満たしている。
(1)数列{a[n])の一般項を求めよ。
(2)b₂、b₃を求めよ。また、b≧0となるようなnの値の範囲を求めよ。
(3)n≧4のとき、数列{b[n]}の一般項を求めよ。
(4)n≧4のとき、∑[k=1~n]b[k]を求めよ。
この動画を見る 

【受験算数】平面図形:折り返した図形【慶應中等部2021】

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#平面図形#角度と面積#慶應義塾中等部
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のようなおうぎの形を、点Oが円周上の点に重なるように直線ABで折り返しました。このとき、角アの大きさを求めなさい。
この動画を見る 
PAGE TOP