【数Ⅲ】【微分とその応用】関数のグラフ2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】関数のグラフ2 ※問題文は概要欄

問題文全文(内容文):
次の関数のグラフの概形をかけ。
(1) $y=\dfrac{x^3}{x^2-4}$
(2) $y=x+\sqrt{1-x^2}$
(3) $y=x\sqrt{1-x^2}$
(4) $y=e^{\frac1x}$
(5) $y=e^{-x}\cos x\quad (0\leqq x \leqq 2\pi)$
チャプター:

0:00 オープニング
0:03 問題概要
1:23 (1)解説
5:24 (2)解説
7:39 (3)解説
9:15 (4)解説
11:54 (5)解説

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフの概形をかけ。
(1) $y=\dfrac{x^3}{x^2-4}$
(2) $y=x+\sqrt{1-x^2}$
(3) $y=x\sqrt{1-x^2}$
(4) $y=e^{\frac1x}$
(5) $y=e^{-x}\cos x\quad (0\leqq x \leqq 2\pi)$
投稿日:2025.03.05

<関連動画>

福田の数学〜中央大学2023年理工学部第4問〜関数方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 以下の問いに答えよ。
(1)整式$f(x)$=$a_nx^n$+$a_{n-1}x^{n-1}$+...+$a_1x$+$a_0$ ($a_0$≠0)に対し、
$f(x+1)$-$f(x)$=$b_nx^n$+$b_{n-1}x^{n-1}$+...+$b_1x$+$b_0$ ($a_0$≠0)
と表すとき、$b_n$と$b_{n-1}$を求めよ。
(2)整式$g(x)$が恒等式$g(x+1)$-$g(x)$=$(x-1)x(x+1)$および$g(0)$=0を満たすとき、$g(x)$を求めよ。
(3)整式$h(x)$が恒等式$h(2x+1)$-$h(2x)$=$h(x)$-$x^2$を満たすとき、$h(x)$を求めよ。
この動画を見る 

福田の数学〜上智大学2024TEAP利用型理系第1問(3)〜対数不等式を満たす最小の整数

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(i) $\log_{10} 2=0.301$とする。このとき、$\log_{10} 1.28=0.\boxed{ウ}$である。
(ii)$n$は$2$以上の整数とする。$n^{100}<1.28^n$となる最小の$n$について、$2^a \leqq n < 2^{a+1}$となる整数$a$は$\boxed{エ}$
この動画を見る 

2022藤田医科大の簡単な問題 メインはn個の相加相乗平均の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x\gt 0$において$\dfrac{x}{2}+\dfrac{2}{x^2}$の最小値を求めよ.

2022藤田医科大過去問
この動画を見る 

福田のわかった数学〜高校3年生理系045〜極限(45)関数の連続性(2)

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 関数の連続性(2)\\
f(x)=[x^2](x+1)\\
はx=0で連続かまた、x=1で連続か、調べよ。
\end{eqnarray}
この動画を見る 

福田の数学〜立教大学2022年理学部第2問〜接線と囲まれた部分の面積と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
実数xに対し、関数f(x)を
$f(x)=xe^{-x}$
により定める。座標平面上の曲線$C:y=f(x)$に関して、次の問(1)~(5)に答えよ。
(1)f(x)の導関数$f'(x)$を求め、$f(x)$の増減表を書け。ただし、極値も記入すること。
(2)f(x)の第2次導関数$f''(x)$を求め、Cの変曲点の座標を求めよ。
(3)Cの変曲点と、座標平面上の原点を通る直線を$l$とする。
Cとlで囲まれた領域の面積Sを求めよ。
(4)$a,\ b,\ c$を定数とし、関数$g(x)$を$g(x)=(ax^2+bx+c)e^{-2x}$と定める。
$g(x)$の導関数$g'(x)$が$g'(x)=x^2e^{-2x}$を満たすとき、$a,\ b,\ c$の値を求めよ。
(5)Cと(3)で定めたlで囲まれた領域を、x軸の周りに1回転してできる
回転体の体積Vを求めよ。

2022立教大学理学部過去問
この動画を見る 
PAGE TOP