鈴木貫太郎
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$5^{2x^2-1}-3・5^{(x+1)(x+2)}-2・5^{6(x+1)}=0$
この動画を見る
実数解を求めよ.
$5^{2x^2-1}-3・5^{(x+1)(x+2)}-2・5^{6(x+1)}=0$
比例式と整数
単元:
#数学(中学生)#中1数学#数A#比例・反比例#整数の性質#約数・倍数・整数の割り算と余り・合同式
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y,z,n$は自然数である.
$2x=3y=5z,x+y+z=n$である.
$\sqrt{xyz}$が整数となる$n$の条件を求めよ.
この動画を見る
$x,y,z,n$は自然数である.
$2x=3y=5z,x+y+z=n$である.
$\sqrt{xyz}$が整数となる$n$の条件を求めよ.
単なる計算問題
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{99910000+\dfrac{81}{4}}$
これを解け.
この動画を見る
$\sqrt{99910000+\dfrac{81}{4}}$
これを解け.
千葉大(医)の類題 整数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数$(n,k)$をすべて求めよ.
$11^n=k^2+12960$
千葉大(医)過去問
この動画を見る
自然数$(n,k)$をすべて求めよ.
$11^n=k^2+12960$
千葉大(医)過去問
図形 中学レベル 円の基本性質の証明
工夫して簡単に!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを簡単にせよ.
$\dfrac{\sqrt{21}+\sqrt{33}+\sqrt{77}+7}{\sqrt3+2\sqrt 7+\sqrt{11}}$
この動画を見る
これを簡単にせよ.
$\dfrac{\sqrt{21}+\sqrt{33}+\sqrt{77}+7}{\sqrt3+2\sqrt 7+\sqrt{11}}$
整数問題基本
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
整数$m,n$をすべて求めよ.
$m^4+n^4-2mn=13$
この動画を見る
整数$m,n$をすべて求めよ.
$m^4+n^4-2mn=13$
中学レベル 倍数の見分け方の証明
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y,z$は1~9の整数である.
$XX+YY+ZZ=XYZ$
これを解け.
この動画を見る
$x,y,z$は1~9の整数である.
$XX+YY+ZZ=XYZ$
これを解け.
変な方程式 指数タワー
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け. $x\gt 0$
$(4x)^x=4^{4^4}$
この動画を見る
これを解け. $x\gt 0$
$(4x)^x=4^{4^4}$
変な指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.$x\gt 0$
$x^{x^2}=\dfrac{1}{\sqrt[4]{2}}$
この動画を見る
これを解け.$x\gt 0$
$x^{x^2}=\dfrac{1}{\sqrt[4]{2}}$
2021東京海洋大 整数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$P$は5以上の素数である.
$P^2-1$は$24$の倍数を示せ.
2021東京海洋大過去問
この動画を見る
$P$は5以上の素数である.
$P^2-1$は$24$の倍数を示せ.
2021東京海洋大過去問
2021一橋大(経済)補足と別解
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋大(経済)過去問
この動画を見る
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋大(経済)過去問
2021一橋(経済)後期
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋(経済)過去問
この動画を見る
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋(経済)過去問
指数方程式 答えは1つじゃないよ
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
すべての解を求めよ.
$5^x・8^{\frac{x}{x+1}}=100$
この動画を見る
すべての解を求めよ.
$5^x・8^{\frac{x}{x+1}}=100$
失敗しないたすきがけ因数分解
三角関数基本
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
値を求めよ.
$\cos \dfrac{\pi}{7}・\cos \dfrac{2\pi}{7}・\cos\dfrac{3\pi}{7}$
この動画を見る
値を求めよ.
$\cos \dfrac{\pi}{7}・\cos \dfrac{2\pi}{7}・\cos\dfrac{3\pi}{7}$
方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\dfrac{x}{x^2+3x+2}-\dfrac{x}{x^2+5x+2}=\dfrac{1}{24}$
この動画を見る
これを解け.
$\dfrac{x}{x^2+3x+2}-\dfrac{x}{x^2+5x+2}=\dfrac{1}{24}$
算数
未知数2で式1つの方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これの実数解を求めよ.
$x^2+y^2+15=\sqrt 6(x-3y)$
この動画を見る
これの実数解を求めよ.
$x^2+y^2+15=\sqrt 6(x-3y)$
4乗根の方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$\sqrt[4]{97-x}+\sqrt[4]{x-15}=4$
この動画を見る
実数解を求めよ.
$\sqrt[4]{97-x}+\sqrt[4]{x-15}=4$
虚数係数の二次方程式(類)横浜市立(医)
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$iz^2-4iz+3i+\sqrt3=0$
横浜市立(医)過去問
この動画を見る
これを解け.
$iz^2-4iz+3i+\sqrt3=0$
横浜市立(医)過去問
2022年問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(45+\sqrt{2022})^{2022}$の1の位を求めよ.
この動画を見る
$(45+\sqrt{2022})^{2022}$の1の位を求めよ.
中学レベル 図形問題
ただの三乗根の計算
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a=\sqrt[3]{81}+2\sqrt[3]{9}+4$
$\dfrac{12}{a}+\dfrac{6}{a^2}+\dfrac{1}{a^3}$の値を求めよ.
この動画を見る
$a=\sqrt[3]{81}+2\sqrt[3]{9}+4$
$\dfrac{12}{a}+\dfrac{6}{a^2}+\dfrac{1}{a^3}$の値を求めよ.
コメント欄はありがたい 素晴らしい別解2つ
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a+b+c$が$6$の倍数ならば$a^3+b^3+c^3$も$6$の倍数であることを示せ.
この動画を見る
$a+b+c$が$6$の倍数ならば$a^3+b^3+c^3$も$6$の倍数であることを示せ.
整数問題 基本
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a+b+c$が$6$の倍数ならば$a^3+b^3+c^3$も$6$の倍数であることを示せ.
この動画を見る
$a+b+c$が$6$の倍数ならば$a^3+b^3+c^3$も$6$の倍数であることを示せ.
整数問題の良問
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m^2-3mn+4n^2=20$を満たす整数$m,n$は存在しない事を示せ.
この動画を見る
$m^2-3mn+4n^2=20$を満たす整数$m,n$は存在しない事を示せ.
指数不等式
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$(\sqrt2-1)^{\frac{x}{x-4}}\gt (3-\sqrt8)^{\frac{1}{2x(x-4)}}$
この動画を見る
これを解け.
$(\sqrt2-1)^{\frac{x}{x-4}}\gt (3-\sqrt8)^{\frac{1}{2x(x-4)}}$
素数を探せ!10101‥101
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
素数を全て求めよ.
$101,10101,1010101,101010・・・・・・101$
この動画を見る
素数を全て求めよ.
$101,10101,1010101,101010・・・・・・101$