新潟大学 - 質問解決D.B.(データベース)

新潟大学

【高校数学】新潟大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分90日目~47都道府県制覇への道~【㉝新潟】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【新潟大学 2023】
$a,b$を正の数とし、座標平面上の曲線
$C_1:y=e^{ax}, C_2:y=\sqrt{2x-b}$
を考える。次の問いに答えよ。
(1)関数$y=e^{ax}$,と関数$y=\sqrt{2x-b}$の導関数を求めよ。
(2)曲線$C_1$と曲線$C_2$が1点$P$を共有し、その点において共通の接線をもつとする。この時,$b$と点$P$の座標を$a$を用いて表せ。
(3) (2)において、曲線$C_1$,曲線$C_2$,$x$軸,$y$軸で囲まれる図形の面積を$a$を用いて表せ。
この動画を見る 

新潟大 漸化式 証明

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数
$a_{n}=\sqrt{ n^2+1 }-n$

(1)
$\displaystyle \frac{1}{2n+1} \lt a_{n} \lt \displaystyle \frac{1}{2n}$を示せ

(2)
$a_{n} \gt a_{n+1}$を示せ

(3)
$a_{n} \lt 0.03$となる最小の自然数$n$

出典:2013年新潟大学 過去問
この動画を見る 

新潟大(医)3次関数・接線・面積 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#新潟大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C:y=2x^3-12x$
$l:(1,-2)$を通る$C$の接線

(1)
$l$の方程式

(2)
$C$と$l$とで囲まれた面積

出典:2006年新潟大学医学部 過去問
この動画を見る 

新潟大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{a+2}=\displaystyle \frac{(a_{n+1})^3}{(a_{n})^2}$

$a_{1}=2$
$a_{2}=4$

一般項$a_{n}$を求めよ

出典:1996年新潟大学 過去問
この動画を見る 

新潟大 微分・積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
国立大学法人新潟大学
$C:$$f(x)=2x^3-12x$
$(1,-2)$を通る接線$C$の接線を$l$

$(1)l$の方程式
$(2)C$と$l$で囲まれる面積
この動画を見る 

新潟大 座標上の格子点の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93新潟大学
n自然数
$y=x^2$上の$(n,n^2)$における接線をl
$y=n^2$,l,及びy軸の3直線で囲まれた部分(境界含む)に含まれる格子点の数
この動画を見る 

新潟大 指数・対数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
新潟大学過去問題
a,b,cは自然数
x,y,z,wは実数
$a^x=b^y=c^z=30^w$
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{w}$を満たすとき、a,b,cを求めよ。$(a \leqq b \leqq c )$
この動画を見る 
PAGE TOP