大阪大学

等比数列 大阪大

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数の列
$a_{1},a_{2},a_{3},a_{4},a_{5}$は等比数列
$S=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$
$S'=a_{1}-a_{2}-a_{3}-a_{4}-a_{5}$
$T=a^2_{1}+a^2_{2}+a^2_{3}+a^2_{4}+a^2_{5}$
(1)
$\displaystyle \frac{T}{S}=S'$を示せ
(2)
$T$が素数のとき、$T$の値は?
出典:1987年大阪大学 過去問
この動画を見る
自然数の列
$a_{1},a_{2},a_{3},a_{4},a_{5}$は等比数列
$S=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$
$S'=a_{1}-a_{2}-a_{3}-a_{4}-a_{5}$
$T=a^2_{1}+a^2_{2}+a^2_{3}+a^2_{4}+a^2_{5}$
(1)
$\displaystyle \frac{T}{S}=S'$を示せ
(2)
$T$が素数のとき、$T$の値は?
出典:1987年大阪大学 過去問
大阪大 対数 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m,n$自然数
$0 \lt a \lt 1$
$log_{2}6=m+\displaystyle \frac{1}{n+a}$
(1)
$m,n$を求めよ
(2)
$a \gt \displaystyle \frac{2}{3}$を示せ
出典:2006年大阪大学 過去問
この動画を見る
$m,n$自然数
$0 \lt a \lt 1$
$log_{2}6=m+\displaystyle \frac{1}{n+a}$
(1)
$m,n$を求めよ
(2)
$a \gt \displaystyle \frac{2}{3}$を示せ
出典:2006年大阪大学 過去問
大阪大 確率 3次式 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
サイコロを3回投げて出た目を順に$l,m,n$として$f(x)=x^3+lx^2+mx+n$について
(1)
$f(x)$が$(x+1)^2$で割り切れる確率は?
(2)
$f(x)$が極大値・極小値もとる確率は?
出典:2012年大阪大学 過去問
この動画を見る
サイコロを3回投げて出た目を順に$l,m,n$として$f(x)=x^3+lx^2+mx+n$について
(1)
$f(x)$が$(x+1)^2$で割り切れる確率は?
(2)
$f(x)$が極大値・極小値もとる確率は?
出典:2012年大阪大学 過去問
でんがんさん初登場 大阪大 Mathematics Japanese university entrance exam

単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
国立大学法人大阪大学
自然数$m,n$が
$\sqrt{n}\leqq\frac{m}{2}<\sqrt{n+1}$を満たす次を証明せよ
$(1)m^2-4n=0または1$
$(2)m<\sqrt{n}+$$\sqrt{n+1}<$$m+1$
この動画を見る
国立大学法人大阪大学
自然数$m,n$が
$\sqrt{n}\leqq\frac{m}{2}<\sqrt{n+1}$を満たす次を証明せよ
$(1)m^2-4n=0または1$
$(2)m<\sqrt{n}+$$\sqrt{n+1}<$$m+1$
でんがんさん初登場 大阪大 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
正の整数m,nが不等式
$\sqrt n \leqq \frac{m}{2} < \sqrt{n+1}$をみたす。以下を示す。
(1)$m^2-4n=0 or 1$
(2)$m < \sqrt n+ \sqrt m < m+1$
この動画を見る
正の整数m,nが不等式
$\sqrt n \leqq \frac{m}{2} < \sqrt{n+1}$をみたす。以下を示す。
(1)$m^2-4n=0 or 1$
(2)$m < \sqrt n+ \sqrt m < m+1$
大阪大 絶対値のついた二次関数と直線の面積 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
'13大阪大学過去問題
$y=x^2+x+4-|3x|$と$y=mx+4$とで囲まれる面積が最小となるmの値
この動画を見る
'13大阪大学過去問題
$y=x^2+x+4-|3x|$と$y=mx+4$とで囲まれる面積が最小となるmの値
大阪大 整数問題 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
'13大阪大学過去問題
$n+1,n^3+3,n^5+5,n^7+7$
すべてが素数となるような自然数nは存在しないことを示せ
この動画を見る
'13大阪大学過去問題
$n+1,n^3+3,n^5+5,n^7+7$
すべてが素数となるような自然数nは存在しないことを示せ
大阪大 整数(素数)問題 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
'04大阪大学過去問題
p,q素数(p>2q)
$a_n=P^n-4(-q)^n$ n自然数
(1)$a_1$と$a_2$が1より大きい公約数mをもつならばm=3であることを示せ
(2)$a_n$が全て3の倍数であるようなp,qのうち積pqが最小となるものを求めよ。
この動画を見る
'04大阪大学過去問題
p,q素数(p>2q)
$a_n=P^n-4(-q)^n$ n自然数
(1)$a_1$と$a_2$が1より大きい公約数mをもつならばm=3であることを示せ
(2)$a_n$が全て3の倍数であるようなp,qのうち積pqが最小となるものを求めよ。
大阪大 4次関数 高校数学 Japanese university entrance exam questions

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#微分法と積分法#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
'90大阪大学過去問題
(a,0)を通り、$y=x^4-2x^2+1$に接する直線がx軸以外にただ1本存在するようなaの値をすべて求めよ。
この動画を見る
'90大阪大学過去問題
(a,0)を通り、$y=x^4-2x^2+1$に接する直線がx軸以外にただ1本存在するようなaの値をすべて求めよ。
大阪大 整数問題 高校数学 Japanese university entrance exam questions

単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2008大阪大学過去問題
αを$x^2-2x-1=0$の解とする。
$(a+5α)(b+5cα)=1$を満たす整数の組(a,b,c)をすべて求めよ。
ただし必要なら$\sqrt2$が無理数であることは証明せずに用いてよい。
この動画を見る
2008大阪大学過去問題
αを$x^2-2x-1=0$の解とする。
$(a+5α)(b+5cα)=1$を満たす整数の組(a,b,c)をすべて求めよ。
ただし必要なら$\sqrt2$が無理数であることは証明せずに用いてよい。
大阪大 整数 高校数学 Japanese university entrance exam questions

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
'99大阪大学過去問題
自然数の組(a,b)でa以上b以下の整数の和が500となるものをすべて求めよ。
a<b
この動画を見る
'99大阪大学過去問題
自然数の組(a,b)でa以上b以下の整数の和が500となるものをすべて求めよ。
a<b
大阪大 微分 立命館 数式 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#大阪大学#立命館大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
立命館大学過去問題
a,b実数 次の式が成り立つa,bを求めよ。
$a^2+10b^2-6ab-2b= -1$
大阪大学過去問題
(1,0)を通り、$y=x^4-2x^2+1$に接する直線の方程式をすべて求めよ。
この動画を見る
立命館大学過去問題
a,b実数 次の式が成り立つa,bを求めよ。
$a^2+10b^2-6ab-2b= -1$
大阪大学過去問題
(1,0)を通り、$y=x^4-2x^2+1$に接する直線の方程式をすべて求めよ。
大阪大学 微分 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2005大阪大学過去問題
$f(x)= 2x^3+x^2-3$
$y=mx$
相異3点で交わる実数mの範囲
この動画を見る
2005大阪大学過去問題
$f(x)= 2x^3+x^2-3$
$y=mx$
相異3点で交わる実数mの範囲
大阪大学 対数 不等式 質問への返答「対数微分法」高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#微分法#色々な関数の導関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
大阪大学過去問題
xの範囲を求めよ
$\log_2(1-x)+\log_4(x+4) \leqq 2$
この動画を見る
大阪大学過去問題
xの範囲を求めよ
$\log_2(1-x)+\log_4(x+4) \leqq 2$