学校別大学入試過去問解説(数学) - 質問解決D.B.(データベース) - Page 16

学校別大学入試過去問解説(数学)

東京都立大学 2023年 #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京都立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi} 2\theta\ \sin^2\theta\ d\theta$

出典:2023年東京都立大学
この動画を見る 

【高校数学】毎日積分68日目~47都道府県制覇への道~【⑫香川】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$-1<x<1$を定義域とする関数$\displaystyle f(x)=\frac{1}{1-x^2}$について、次の問に答えよ。
(1)原点から曲線$C:y=f(x)$に引いた2本の接線それぞれの方程式を求めよ。
(2)$C$と(1)の2本の接線で囲まれてできる図形$D$の面積を求めよ。
(3)$D$を$y$軸のまわりに1回転させてできる立体の体積を求めよ。
【香川大学 2023】
この動画を見る 

福田の数学〜慶應義塾大学2024年理工学部第1問(1)〜6番目に大きい約数と6乗根に最も近い自然数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$(1)2024の約数の中で1番大きいものは2024だが,6番目に大きいものは$\boxed{ア}$である.
2024の6乗根に最も近い自然数は$\boxed{イ}$である.

2024慶應義塾大学理工過去問
この動画を見る 

大学入試問題#739「このタイプ、定期的に難関大学で出題されてる」 早稲田大学国際教養学部(2005)三角関数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\sin\ x+\sin\ y=\displaystyle \frac{2}{3},\ \cos\ x\ \cos\ y=\displaystyle \frac{1}{2}$のとき、
$\sin\ x\sin\ y,\ \sin\displaystyle \frac{x+y}{2}$の値を求めよ。

出典:2005年早稲田大学国際教養学部 入試問題
この動画を見る 

整数の問題& 場合の数 2024早稲田実業

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1⃣2⃣3⃣4⃣の4枚のカードを
$▢^▢×▢▢$のように並べる
式の値が3の倍数となる並べ方は何通り?
2024早稲田実業学校
この動画を見る 

【高校数学】毎日積分67日目~47都道府県制覇への道~【⑪徳島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle f(x)=\frac{2x^2-x-1}{x^2+2x+2}$とする。
(1)$\displaystyle\lim_{x\to -\infty} f(x)$および$\displaystyle \lim_{x\to \infty} f(x)$を求めよ。
(2)導関数$f'(x)$を求めよ。
(3)関数$y=f(x)$の最大値と最小値を求めよ。
(4)曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ。
【徳島大学 2023】
この動画を見る 

知っていれば一瞬!!2次方程式と解と式の関係 2024早稲田実業

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$3x^2-4x-2=0$の2つの解をa,bとする。
$(3a^2-4a+2)(6b^2-8b)=?$
2024早稲田実業学校
この動画を見る 

大学入試問題#738「これはガチ良問!」 藤田医科大学(2024) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-5}^{7} \sqrt{ x^4+2x^3-3x^2-4x+4 }\ dx$

出典:2024年藤田医科大学 入試問題
この動画を見る 

【高校数学】毎日積分66日目~47都道府県制覇への道~【⑩愛媛】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_{-\frac{π}{3}}^{\frac{π}{3}}(x+tanx)dx=[オ]$であり、$\int_{-\frac{π}{3}}^{\frac{π}{3}}|x+tanx|dx=[カ]$である。
関数$f(x)=x,g(x)=2xsinx$について、$f'(0)=1$であり、$g'(0)=[キ]$である。また、$0≦x≦\frac{π}{6}$において、直線$y=f(x)$と曲線$y=g(x)$とで囲まれた図形の面積は[ク]である。
【愛媛大学 2023】
この動画を見る 

大学入試問題#737「もはや三角関数の問題」 早稲田大学人間科学部(2001)定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\sin\ 15^{ \circ }}^{\cos\ 15^{ \circ }} (3x^2-1) dx$

出典:2001年早稲田大学人間科学部 入試問題
この動画を見る 

【高校数学】毎日積分65日目~47都道府県制覇への道~【⑨高知(高知大学)】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)すべての実数$x$に対して
$sin3x=3sinx-4sin^3x$
$cos3x=-3cosx+4cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$θ$を、$\displaystyle\frac{π}{3}<θ<\frac{π}{2}$と$cos3θ=\displaystyle-\frac{11}{16}$を同時に満たすものとする。このとき、$cosθ$を求めよ。
(3)(2)の$θ$に対して、定積分$\displaystyle\int_0^θsin^5xdx$を求めよ。
【高知大学 2023】
この動画を見る 

福田の数学〜東京大学2018年理系第5問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の原点を中心とする半径 1 の円を C とする。
点 P(z) は C 上にあり、点 A(I) とは異なるとする。
点 P における円 C の接線に関して、点 A と対称な点を Q(u) とする。
$\omega=\displaystyle \frac{1}{1-u}$とおき$\omega$と共役な複素数を$\overline{ \omega }$で表す。

(1)uと$\displaystyle \frac{\overline{ \omega }}{\omega}$をzについての整数として表し、絶対値の値$\displaystyle \frac{\vert \omega+\overline{ \omega }-1 \vert}{\vert \omega \vert}$を求めよ。
(2)Cのうち実部が$\frac{1}{2}$以下の複素数平面で表される部分をCとする。点P(z)がC’上を動くときの点R($\omega$)の軌跡を求めよ。
  $\omega=x+yi$(x,yは実数)とおく。

2018東大理系過去問
この動画を見る 

大学入試問題#736「茶番積分」 順天堂大学医学部(2024) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#順天堂大学
指導講師: ますただ
問題文全文(内容文):
$C=\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos\ x+3}{2\sin\ x+3\cos\ x+13} dx$

$D=\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\sin\ x+2}{2\sin\ x+3\cos\ x+13} dx$

$C,D$の値を求めよ。

出典:2024年順天堂大学医学部 入試問題
この動画を見る 

大学入試問題#735「因数分解だからと舐めプ厳禁」 関西医科大学(2016)因数分解

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#関西医科大学
指導講師: ますただ
問題文全文(内容文):
$x(x+9)(x-4)(x-13)+2016$を因数分解せよ

出典:2016年関西医科大学 入試問題
この動画を見る 

【高校数学】毎日積分63日目~47都道府県制覇への道~【⑦佐賀】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の問に答えよ。
(1)等式$(\tan\theta)’=\dfrac{1}{\cos^2\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{1}{\cos^2\theta}d\theta$の値を求めよ。
(2)等式$\dfrac{\cos\theta}{1+\sin\theta}+\dfrac{\cosθ}{1-\sin\theta}=\dfrac{2}{\cos\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos\theta}d\theta$の値を求めよ。
(3)定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos^3\theta}d\theta$の値を求めよ。
【佐賀大学 2023】
この動画を見る 

大学入試問題#734「落とせん!!」 東海大学医学部(2004) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{2x+1}{x(x-1)^2}dx$

出典:2004年東海大学医学部 入試問題
この動画を見る 

放物線と直線  2024早大本庄  オンラインで教えている生徒が早稲田本庄に合格しました!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
点(1,9)を通り、y軸と平行でなく放物線$y=x^2$とのすべての交点のx座標とy座標がともに整数となる直線は何本あるか?
2024早稲田大学 本庄高等学院
この動画を見る 

【高校数学】毎日積分62日目~47都道府県制覇への道~【⑥長崎】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$ a,b$を定数とする。すべての実数$x$で連続な関数$f(x)$について、等式
$\displaystyle\int_a^bf(x)dx = \displaystyle\int_a^bf(a+b-x)dx$
が成り立つことを証明せよ。また、定積分$\displaystyle\int_1^2\frac{x^2}{x^2+(3-x)^2}dx$を求めよ。
【長崎大学 2023】
この動画を見る 

福田の数学〜東京大学2018年理系第3問〜軌跡と領域そして極限

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#関数と極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
放物線$y=x^2$のうち$-1 \leqq x \leqq 1$を満たす部分をCとする。座標平面上の原点Oと点A(1,0)を考える。K>0を実数とする。点PがCの上を動き、天Qが線分OA上を動くとき$\overrightarrow{ OR }=\displaystyle \frac{1}{k}\overrightarrow{ OP }+k\overrightarrow{ OQ }$を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle \lim_{ k \to +0 } S(k) ,\displaystyle \lim_{ k \to \infty }S(k)$を求めよ。

2018東京大学理系過去問
この動画を見る 

大学入試問題#733「教科書の章末問題」 東海大学医学部(2021) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\sqrt{ \sqrt{ e }-1 }}^{\sqrt{ e^2-1 }} \displaystyle \frac{x\ log(log(x^2+1))}{x^2+1} dx$

出典:2021年東海大学医学部 入試問題
この動画を見る 

【高校数学】毎日積分61日目~47都道府県制覇への道~【⑤大分】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$C$を媒介変数$θ$を用いて
$\begin{equation}
\left\{ \,
\begin{aligned}
x=3cosθ \\
y=sin2θ
\end{aligned}
\right.
\end{equation}$
$(0≦θ≦π/2)$
と表す。
(1)曲線$C$上の点で、$y$座標の値が最大となる点の座標$(x,y)$を求めなさい。また、曲線$C$上の点で、$y$座標の値が最小となる点の座標$(x,y)$をすべて求めなさい。
(2)曲線$C$と$x$軸で囲まれた図形の面積$S$を求めなさい。
(3)曲線$C$と$x$軸で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積$V$を求めなさい。
【大分大学 2023】
この動画を見る 

【高校数学】毎日積分60日目~47都道府県制覇への道~【④熊本】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
定積分$\displaystyle \int_1^{\sqrt{t}}4tx(1-tx^2)e^{-tx^2}logxdx$の値を$t$を用いて表せ。
【熊本大学 2023】
この動画を見る 

福田の数学〜東京大学2018年理系第2問〜数列の増減とユークリッドの互除法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_{ 1 },a_{ 2 }・・・$を
$a_{ n }=\dfrac{2_{ n }+{}_1 \mathrm{ C }_n}{n!}$(n=1,2,・・・)
で定める
(1)$n \geqq 2$とする。$\dfrac{a_{n}}{a_{n-1}}$を規約分数$\dfrac{q_{n}}{p_{n}}$として表したときの分母$p_{n} \geqq 1$と分子$q_{n}$を求めよ。
(2)$a_{n}$が整数となる$n\geqq1$をすべて求めよ。

2018東京大学理過去問
この動画を見る 

大学入試問題#731「手を動かす前に読みをいれる」 東京慈恵会医科大学(2004) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: ますただ
問題文全文(内容文):
$\theta$は$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$かつ$\tan\theta=2$を満たすとする。
$\displaystyle \int_{\frac{\pi}{4}}^{\theta} \displaystyle \frac{dx}{\sin^4x}$

出典:2004年東京慈恵医科大学 入試問題
この動画を見る 

【高校数学】毎日積分59日目~47都道府県制覇への道~【③宮崎】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$\displaystyle f(x)=\frac{x}{1+x^2}$および座標平面上の原点$O$を通る曲線$C:y=f(x)$について、次の各問に答えよ。
(1)$f(x)$の導関数$f'(x)$および第2次導関数$f''(x)$を求めよ。
(2)直線$y=ax$が曲線$C$に$O$で接するときの定数$a$の値を求めよ。また、このとき、$x >0$において、$ax>f(x)$が成り立つことを示せ。
(3)関数$f(x)$の増減、極値、曲線$C$の凹凸、変曲点および漸近線を調べて、曲線$C$の概形をかけ。
(4)(2)で求めた$a$の値に対し、曲線$C$と直線$y=ax$および直線$x=\sqrt{3}$で囲まれた部分の面積$S$を求めよ。
【宮崎大学 2023】
この動画を見る 

福田の数学〜東京大学2018年理系第1問〜関数の増減と極限の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\dfrac{x}{\sin x}+\cos x (0 \lt x \lt \pi)$のぞうげんひょうを作り、$x→+0,x→\pi-0$のときの極限を調べよ。

2018東京大学理過去問
この動画を見る 

大学入試問題#730「総和と間違えそう」 早稲田大学商学部(2011) 個数の処理

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$n$を正の整数とする。
$10^n$の正の約数すべての積の値を求めよ。

出典:2011年早稲田大学商学部 入試問題
この動画を見る 

【高校数学】毎日積分58日目~47都道府県制覇への道~【②鹿児島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x>0$で定義された曲線
$C : y=(log x)^2$
を考える
(1)$a$を正の実数とする時、点$P(a,(log a)^2)$における曲線$C$の接線$L$の方程式を求めよ。
(2)$a>1$のとき、接線$L$と$x$軸の交点の$x$座標が最大となる場合の$a$の値$a_0$を求めよ。
(3)$a$の値が(2)の$a_0$に等しいとき、直線$L$の$y≧0$の部分と曲線$C$と$x$軸で囲まれた部分を、$x$軸の周りに1回転させてできる図形の体積を求めよ。
【鹿児島大学 2023】
この動画を見る 

大学入試問題#729「医学部なら落とせん」 関西医科大学(2021) 整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#関西医科大学
指導講師: ますただ
問題文全文(内容文):
$x^2-|x|y+y^2=3$を満たす整数の組$(x,y)$をすべて求めよ。

出典:2021年関西医科大学 入試問題
この動画を見る 

【高校数学】毎日積分57日目~47都道府県制覇への道~【①沖縄】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#琉球大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$を実数とし、$f(x)=xe^{-|x|}, g(x)=ax$とおく。次の問いに答えよ。
問1 $f(x)$の増減を調べ、$y=f(x)$のグラフの概形をかけ。ただし$\displaystyle \lim_{x\to \infty}xe^{-x}=0$は証明なしに用いてよい。
問2 $0<a<1$のとき、曲線$y=f(x)$と直線$y=g(x)$で囲まれた2つの部分の面積の和を求めよ。
【琉球大学 2023】
この動画を見る 
PAGE TOP