学校別大学入試過去問解説(数学) - 質問解決D.B.(データベース) - Page 42

学校別大学入試過去問解説(数学)

三角比の大小の比較【数学 入試問題】【神戸薬科大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$A,B(A \neq B)$がいずれも鋭角のとき、次の3つの数のうち、最大値は$□$、最小値は$□$である。

$ sin\dfrac{A+B}{2},sin\dfrac{A}{2}+sin\dfrac{B}{2},\dfrac{sinA+sinB}{2}$

神戸薬科大過去問
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第4問〜確率漸化式と誤った答案に対する指摘

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の問題
問題
表面と裏面が出る確率がそれぞれであるコインを投げる試行を繰り返し、同
じ面が3回連続して出た時点で試行を終了する。n回投げ終えた段階で試行が
終了する確率 $p_n$を求めよ。
に対する次の答案Aについて以下の問いに答えよ。
(1) もし答案Aに誤りがあれば誤りを指摘し、その理由を述べよ。ただし、すでに
指摘してある誤った結論から論理的に導き出した結論を誤りとして指摘する必要
はない。誤りがないときは「誤りなし」と答えよ。
(2) 答案Aで導かれたp_nと正解の$p_n$とで値が異なるとき、値が異なる最小のnを
求め、そのnに対する正解のpnの値を答えよ。そのようなnがないときは
「すべて一致する」と答えよ。

答案A
自然数nに対して、コインをn回投げ終えた段階で、その後最短で試行が終了するために
必要な回数がk回($k \geqq 0$)である確率を$p_n(k)$とする。このとき、
kは0,1,2のいずれかであるから、確率の総和は
$p_n(0)+p_n(1)+p_n(2)=1$
である。また、$p_n(0)=p_n,p_{n+1}(0)=\frac{1}{2}p_n(1),p_{n+2}(0)=\frac{1}{4}p_n(2)$であるから漸化式
$p_n+2p_{n+1}+4p_{n+2}=1 (n \geqq 1)$
を得る。ここで$\frac{1}{7}+\frac{2}{7}+\frac{4}{7}=1$なので、$q_n=2^n(p_n-\frac{1}{7})$とすれば
$q_n+q_{n+1}+q_{n+2}=0$
である。よって$n \geqq 4$に対して
$q_n=-q_{n-1}-q_{n-2}=(q_{n-2}+q_{n-3})-q_{n-2}=q_{n-3}$
が成立する。以上より、
$Q(x)=
\left\{
\begin{array}{1}q_1 (nを3で割った時の余りが1のとき)\\
q_2 (nを3で割った時の余りが2のとき)\\
q_3      (nが3で割り切れるとき)\\
\end{array}
\right.$
とすれば求める確率は
$p_n=\frac{q_n}{2^n}+\frac{1}{7}=\frac{Q(n)}{2^n}+\frac{1}{7} (n \geqq 4)$
である。また最初の2項は定義より$p_1=p_2=0$であり$p_n$の漸化式で$n=1$とすれば
$p_1+2p_2+4p_3=1$ であるから$p_3=\frac{1}{4}$である。さらに
$q_1=-\frac{2}{7}, q_2=-\frac{4}{7}, q_3=\frac{6}{7}$
である。したがって
$p_1=p_2=0, p_3=\frac{1}{4}, p_n=\frac{Q(n)}{2^n}+\frac{1}{7} (n \geqq 4)$
となる。

2022浜松医科大学医学部過去問
この動画を見る 

早稲田の簡単すぎる問題!満点必須です【数学 入試問題】【早稲田大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$が$\dfrac{1}{3}≦x≦9$の範囲を動くとき,関数 $f(x)=(\log_\frac{1}{3}9x)(log_\frac{1}{3}\dfrac{x}{3})$の最大値と最小値を求めよ。

早稲田大過去問
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第3問〜不等式の証明と正12角形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)$e$を自然対数の底とする。このとき、すべての自然数$n$について
$e^x \geqq 1+\sum_{k=1}^n\frac{x^k}{k!}   (x \geqq 0)$
を証明せよ。
(2)半径1の円に外接する正12角形の面積を求めよ。ただし、正12角形が円に
外接するとは、正12角形のすべての辺が1つの円に接することである。

(3)(1)と(2)を用いて、不等式
$\pi - e \lt \frac{3}{5}$
を証明せよ。ただし、$\sqrt3 \gt 1.73$は証明なしに用いてよい。 

2022浜松医科大学医学部過去問
この動画を見る 

微分でもいいけど「あれ」を使えば一瞬です【数学 入試問題】【早稲田大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x>0$のとき、$3x+\dfrac{1}{x^3}$の最小値とそのときの$x$の値を求めよ。

早稲田大過去問
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第2問〜3次関数が区間で常に正である条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$s$を実数、tを0以上の実数とし、関数f(x)を
$f(x)=x^3-sx^2+(t-2s^2)\ x+st$
により定める。関数$f(x)$に対して次の条件pを考える。
$p:0 \leqq x \leqq 1$を満たすすべてのxに対して$f(x) \gt 0$である。
このとき、条件pを満たす点(s,t)の領域を図示せよ。

2022浜松医科大学医学部過去問
この動画を見る 

自力で対数の範囲を求めて桁数を出す【数学 入試問題】【岐阜大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)不等式$\dfrac{3}{10}<log_{10} 2<\dfrac{4}{13}$を証明せよ。
(2)(1)を用いて、$2^{100}は何桁の数か答えよ。

岐阜大過去問
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第1問〜媒介変数表示で表された曲線の長さと接線の傾きと体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#浜松医科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
媒介変数$t\ (t \geqq 0)$に対して、$x=\frac{4}{\sqrt3}t^{\frac{3}{2}},y=2t$で表される曲線C上に
点$P_1$と$P_2$がある。原点から点$P_1$までの曲線の長さは$\frac{28}{9}$であり、点$P_2$における曲線C
の接線の傾きは$\frac{1}{3}$である。以下の問いに答えよ。
(1)点$P_1$の座標$(x_1,y_1)$を求めよ。
(2)点$P_2$の座標$(x_2,y_2)$を求めよ。
(3)曲線Cとy軸、および2直線$y=y_1,y=y_2$で囲まれた図形を、y軸の周りに1回転
してできる回転体を考える。この回転体の体積を求めよ。

2022浜松医科大学医学部過去問
この動画を見る 

東海大(医)えっ!そんなんでいいの?

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$n^3+100$が$n+10$で割り切れるような最大の自然数$n$を求めよ.

東海大(医)過去問
この動画を見る 

【良問】整数問題の重要なポイントが詰まりまくった問題【数学 大学入試】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)整数$m$に対して、$m^2$を4で割った余りは0または1であることを示せ。
(2)自然数$n,k$が$25×3^n=k^2+176$・・・・・・(①)を満たすとき、$n$は偶数であることを示せ。
(3)(2)の関係式(①)を満たす自然数の組($n,k$)をすべて求めよ。

数学入試問題過去問
この動画を見る 

福田の数学〜筑波大学2022年理系第6問〜複素数平面上の点の軌跡と最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$i$は虚数単位とする。次の条件$(\textrm{I}),(\textrm{II})$のどちらも満たす複素数z全体の集合を
Sとする。
$(\textrm{I})z$の虚部は正である。
$(\textrm{II})$複素数平面上の点$A(1),B(1-iz),C(z^2)$は一直線上にある。
このとき、以下の問いに答えよ。
(1)1でない複素数$\alpha$について、$\alpha$の虚部が正であることは、$\frac{1}{\alpha-1}$の虚部が
負であるための必要十分条件であることを示せ。
(2)集合Sを複素数平面上に図示せよ。
(3)$w=\frac{1}{z-1}$とする。zがSを動くとき、$|w+\frac{i}{\sqrt2}|$の最小値を求めよ。

2022筑波大学理系過去問
この動画を見る 

式の値 数I

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a>0$ , $a^2+\frac{1}{a^2}=3$のとき
$a^3+ \frac{1}{a^3} = ?$

神奈川大学
この動画を見る 

対数を用いて桁数を求める良問【数学 入試問題】【東京理科大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。
2^{36}は$□$桁の整数である。$3^n$が$□$桁の整数となる。
最小の自然数$n$は$□$であり、$2^{36}+6・3^{□}$は$□$桁の整数である。

東京理科大過去問
この動画を見る 

福田の数学〜筑波大学2022年理系第5問〜関数の増減と最大値

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=(x+1)e^{-x} (x \gt -1)$上の点Pにおける法線とx軸との交点をQとする。
点Pのx座標をtとし、点Qと点R(t,0)との距離をd(t)とする。
(1) d(t)をtを用いて表せ。
(2) $x \geqq 0$のとき $e^x \geqq 1+x+\frac{x^2}{2}$であることを示せ。
(3) 点Pが曲線C上を動くとき、d(t)の最大値を求めよ。

2022筑波大学理系過去問
この動画を見る 

藤田医科大学 式の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a,b,c,dは実数である.
$\dfrac{(a^2+b^2)(c^2+d^2)}{(ac+bd)^2}$の最小値を求めよ.
この動画を見る 

【数Ⅲ】絶対に落としてはいけない微分!ポイントがぎゅっと詰まった問題【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数$ f(x)=x sin(\log x) (1≦x≦e^\pi)$の最大値を求めよ。

数学入試問題過去問
この動画を見る 

福田の数学〜筑波大学2022年理系第4問〜2つの三角関数のグラフで囲まれた部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
$0 \lt a \lt 4$とする。曲線
$C_1:y= 4\cos^2x   (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})$,
$C_2:y=a-\tan^2x   (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})$
は、ちょうど2つの共有点をもつとする。
(1)aの値を求めよ。
(2)$C_1$と$C_2$で囲まれた部分の面積を求めよ。

2022筑波大学理系過去問
この動画を見る 

【数Ⅲ】うまく式変形できる?【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ f(x)=x sin^2x(0≦x≦\pi)$
の最大値を与える$ x$を$a$とするとき、$f(a)$を$a$の分数式で表せ。

横浜市大過去問
この動画を見る 

福田の数学〜筑波大学2022年理系第3問〜平行四辺形の中の平行四辺形

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$0 \lt t \lt 1$とする。平行四辺形ABCDにおいて、線分AB,BC,CD,DAを
$t:1-t$に内分する点をそれぞれ$A_1,B_1,C_1,D_1$とする。さらに$A_2,B_2,C_2,D_2$および$A_3,B_3,C_3,D_3$を次の条件を満たすように定める。
$(\ 条件\ )k=1,2$について、点$A_{k+1},B_{k+1},C_{k+1},D_{k+1}$はそれぞれ線分$A_kB_k$,
$B_kC_k,C_kD_k,D_kA_k$を$t:1-t$に内分する。
$\overrightarrow{ AB }=\overrightarrow{ a }, \overrightarrow{ AD }=\overrightarrow{ b }$とするとき、以下の問いに答えよ。
(1)$\overrightarrow{ A_1B_1 }=p\overrightarrow{ a }+q\overrightarrow{ b }, \overrightarrow{ A_1D_1 }=x\ \overrightarrow{ a }+y\ \overrightarrow{ b }$ を満たす実数p,q,x,yを
tを用いて表せ。
(2)四角形$A_1B_1C_1D_1$は平行四辺形であることを示せ。
(3)$\overrightarrow{ AD }$と$\overrightarrow{ A_3B_3 }$が平行となるようなtの値を求めよ。

2022筑波大学理系過去問
この動画を見る 

【良問】面倒な作業は省略しろ!一橋大学の整数問題【数学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ 3q^3-p^2q-pq^2+3q^3=2013$を満たす正の整数$ p,q$をすべて求めよ。

一橋大過去問
この動画を見る 

福田の数学〜筑波大学2022年理系第2問〜確率漸化式と常用対数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数B
指導講師: 福田次郎
問題文全文(内容文):
整数$\ a_1,\ a_2,\ a_3,\ \ldots$を、さいころをくり返し投げることにより、以下のように
定めていく。まず$a_1=1$とする。そして、正の整数$n$に対し、$a_{n+1}$の値を、n回目に
出たさいころの目に応じて、次の規則で定める。
$(\ 規則\ )$ n回目に出た目が1,2,3,4なら$a_{n+1}=a_n、5,6$なら$a_{n+1}=-a_n$
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、
$a_1=1,a_2=-1,a_3=-1,a_4=1$となる。
$a_n=1$となる確率を$p_n$とする。ただし、$p_1=1$とし、さいころのどの目も、
出る確率は$\frac{1}{6}$であるとする。
(1)$p_2,p_3$を求めよ。
(2)$p_{n+1}$を$p_n$を用いて表せ。
(3)$p_n \leqq 0.5000005$を満たす最小の正の整数nを求めよ。
ただし、$0.47 \lt \log_{10}3 \lt 0.48$であることを用いてよい。

2022筑波大学理系過去問
この動画を見る 

【整数問題の超難問】素数の中のあの数字を使え!一橋大学で実際に出された入試問題【数学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ a-b-8$と$b-c-8$が素数となるような素数の組$(a,b,c)$をすべて求めよ。

一橋大過去問
この動画を見る 

福田の数学〜筑波大学2022年理系第1問〜円と放物線の接線と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
$t,\ p$を実数とし、$t \gt 0$とする。xy平面において、原点Oを中心とし点A(1,t)
を通る円を$C_1$とする。また、点Aにおける$C_1$の接線をlとする。直線$x=p$
を軸とする2次関数のグラフC_2は、x軸と接し、点Aにおいて直線lとも接するとする。
(1)直線$l$の方程式をtを用いて表せ。
(2)pをtを用いて表せ。
(3)$C_2$とx軸の接点をMとし、$C_2$とy軸の交点をNとする。tが正の実数全体を動くとき、
三角形OMNの面積の最小値を求めよ。

2022筑波大学理系過去問
この動画を見る 

頻出の整数問題!難関大学でよく出る重要な性質【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ m $を整数とする。3次方程式$ x^3+mx^2+(m+8)x+1=0$は有理数の解$a$を持つ。
(1)$a$は整数であることを示せ。
(2)$m$の値を求めよ

一橋大過去問
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第3問〜定積分と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=f(x) (0 \leqq x \lt 1)$が次の条件を満たすとする。
・$f(0)=0$
・$0 \lt x \lt 1$のとき$f'(x) \gt 0$
・$0 \lt a \lt 1$を満たすすべての実数aについて、曲線C上の点$(a, f(a))$
における接線と直線$x=1$との交点をQとするとき、$PQ=1$
この時以下の問いに答えよ。
(1)$f'(x)$を求めよ。
(2)$\int_0^{\frac{1}{2}}(1-x)f'(x)dx$の値を求めよ。
(3)曲線Cとx軸、直線$x=1$、直線$y=f(\frac{1}{2})$で囲まれた部分の面積を求めよ。

2022東京医科歯科大学理系過去問
この動画を見る 

難問整数問題!大事なのは指数の感覚!?【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ 6・3^{3x}+1=7・5^{2x}$を満たす$0$以上の整数$x$をすべて求めよ。

一橋大過去問
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第2問〜放物線に反射する直線の方程式と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#微分法と積分法#点と直線#円と方程式#微分とその応用#積分とその応用#接線と法線・平均値の定理#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$xy$平面上の放物線$P:y^2=4x$上に異なる2点A,Bをとり、A,Bそれぞれに
おいてPへの接線と直交する直線を$n_A,\ n_B$とする。aを正の数として、点Aの座標
を$(a,\ \sqrt{4a})$とするとき、以下の各問いに答えよ。
(1)$\ n_A$の方程式を求めよ。
(2)直線ABと直線$y=\sqrt{4a}$とがなす角の2等分線の一つが、$n_A$に一致する
とき、直線ABの方程式をaを用いて表せ。
(3)(2)のとき、点Bを通る直線$r_B$を考える。$r_B$と直線ABとがなす角の
2等分線の一つが、$n_B$に一致するとき、$r_B$の方程式をaを用いて表せ。
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
$y=\sqrt{4a}$、直線$x=-1$および(3)の$r_B$で囲まれた図形の面積を$S_2$とする。
aを変化させたとき、$\frac{S_1}{S_2}$の最大値を求めよ。

2022東京医科歯科大学理系過去問
この動画を見る 

整数問題の難問!君は解けるか!?【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ a^4=b^2+2^c$を満たす正の整数の組$(a,b,c)$で$a$が奇数であるものを求めよ。

一橋大過去問
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第1問〜2つのベクトルで生成される異なる点の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#平面上のベクトル#場合の数#三角関数#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
nを自然数とする。整数i,jに対し、xy平面上の点$P_{i,j}$の座標を
$(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)$
で与える。さらに、i,jを動かしたとき、$P_{i,j}$の取り得る異なる座標の
個数を$S_n$とする。このとき、以下の問いに答えよ。
(1)$n=3$のとき、$\triangle P_{0,0}P_{0,1}P_{0,2}$および$\triangle P_{1,0}P_{1,1}P_{1,2}$を同一平面上
に図示せよ。
(2)$S_4$を求めよ。
(3)平面上の異なる2点A,Bに対して、$AQ=BQ=1$であるような
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。
(4)$S_n$をnを用いて表せ。

2022東京医科歯科大学理系過去問
この動画を見る 

分数式の値 京都産業大学

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{y+z}{x} = \frac{z+x}{y} = \frac{x+y}{z} = k$
$x+y+z \neq 0$ のときk=▢
$x+y+z = 0$ のときk=▢

京都産業大学
この動画を見る 
PAGE TOP