大学入試過去問(数学)
大学入試過去問(数学)
福田の数学〜早稲田大学2025人間科学部第5問〜接線と面積

単元:
#大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
曲線$C:y=\cos x\left(0\leqq x \leqq \dfrac{\pi}{2}\right)$上の点
$(\theta,\cos\theta)$における接線を$l$とする。
(1)$\theta=\dfrac{\pi}{4}$のとき、接線$l$と
$x$軸との交点の座標は$\left(\dfrac{\pi+\boxed{二}}{\boxed{ヌ}},0\right)$である。
(2)曲線$C$と接線$l$、および$x$軸によって
囲まれた部分の面積が$1$であるとき、
$\sin\theta=\boxed{ネ}-\sqrt{\boxed{ノ}}$である。
$2025$年早稲田大学人間科学部過去問題
この動画を見る
$\boxed{5}$
曲線$C:y=\cos x\left(0\leqq x \leqq \dfrac{\pi}{2}\right)$上の点
$(\theta,\cos\theta)$における接線を$l$とする。
(1)$\theta=\dfrac{\pi}{4}$のとき、接線$l$と
$x$軸との交点の座標は$\left(\dfrac{\pi+\boxed{二}}{\boxed{ヌ}},0\right)$である。
(2)曲線$C$と接線$l$、および$x$軸によって
囲まれた部分の面積が$1$であるとき、
$\sin\theta=\boxed{ネ}-\sqrt{\boxed{ノ}}$である。
$2025$年早稲田大学人間科学部過去問題
福田の数学〜早稲田大学2025人間科学部第4問〜3次方程式の解が直角三角形を作る条件

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$k$を実数の定数となる。
$z$についての方程式
$z^3-5z^2+kz-5=0$の$3$つの解は
複素数平面上で斜辺$2$の直角三角形の頂点となる。
このとき、$k=\boxed{ト}$であり、
この直角三角形の面積は$\boxed{ナ}$である。
$2025$年早稲田大学人間科学部過去問題
この動画を見る
$\boxed{4}$
$k$を実数の定数となる。
$z$についての方程式
$z^3-5z^2+kz-5=0$の$3$つの解は
複素数平面上で斜辺$2$の直角三角形の頂点となる。
このとき、$k=\boxed{ト}$であり、
この直角三角形の面積は$\boxed{ナ}$である。
$2025$年早稲田大学人間科学部過去問題
福田の数学〜早稲田大学2025人間科学部第3問〜外心と内心の位置ベクトル

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
(1)$\triangle ABC$において$AB=6,AC=4,$
$\cos A=\dfrac{1}{4}$とする。
$\triangle ABC$の外心を$H$とし、直線$AH$が
$\triangle ABC$の外接円と交わる点のうち、
点$A$とは異なる点を$P$とする。
このとき、$\overrightarrow{AP}=\dfrac{\boxed{ス}}{\boxed{セ}}\overrightarrow{AB}+\dfrac{\boxed{ソ}}{\boxed{タ}}\overrightarrow{AC}$である。
(2)$\triangle ABC$において$AB=5,AC=6,$
$\cos A=\dfrac{1}{5}$とする。
$\triangle ABC$の内心を$K$とし、
直線$AK$が$\triangle ABC$の内接円と
交わる点のうち、点$A$に近いほうの点を
$Q$とする。
このとき、$\overrightarrow{AQ}=\dfrac{\boxed{チ}-\sqrt{\boxed{ツ}}}{\boxed{テ}}\overrightarrow{AK}$である。
$2025$年早稲田大学人間科学部過去問題
この動画を見る
$\boxed{3}$
(1)$\triangle ABC$において$AB=6,AC=4,$
$\cos A=\dfrac{1}{4}$とする。
$\triangle ABC$の外心を$H$とし、直線$AH$が
$\triangle ABC$の外接円と交わる点のうち、
点$A$とは異なる点を$P$とする。
このとき、$\overrightarrow{AP}=\dfrac{\boxed{ス}}{\boxed{セ}}\overrightarrow{AB}+\dfrac{\boxed{ソ}}{\boxed{タ}}\overrightarrow{AC}$である。
(2)$\triangle ABC$において$AB=5,AC=6,$
$\cos A=\dfrac{1}{5}$とする。
$\triangle ABC$の内心を$K$とし、
直線$AK$が$\triangle ABC$の内接円と
交わる点のうち、点$A$に近いほうの点を
$Q$とする。
このとき、$\overrightarrow{AQ}=\dfrac{\boxed{チ}-\sqrt{\boxed{ツ}}}{\boxed{テ}}\overrightarrow{AK}$である。
$2025$年早稲田大学人間科学部過去問題
福田の数学〜早稲田大学2025人間科学部第2問〜絶対値の付いた関数の最小

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
$a\lt b \lt c$を満たす実数の定数に対して、
すべての実数を定義域とする$x$の関数
$f(x)=\vert x-a \vert + \vert x-b \vert + \vert x-c \vert $を定める。
このとき、$5x+4f(x)$の最小値は
$\boxed{ク}a + \boxed{ケ}b + \boxed{コ}c$である。
また、$f(x)$の最小値が$20$で、
$f(c)=28$かつ$f(10)=31$を満たす$a$の値は
$\boxed{サ}$と$\boxed{シ}$である。
ただし、$\boxed{サ} \lt \boxed{シ}$とする。
$2025$年早稲田大学人間科学部過去問題
この動画を見る
$\boxed{2}$
$a\lt b \lt c$を満たす実数の定数に対して、
すべての実数を定義域とする$x$の関数
$f(x)=\vert x-a \vert + \vert x-b \vert + \vert x-c \vert $を定める。
このとき、$5x+4f(x)$の最小値は
$\boxed{ク}a + \boxed{ケ}b + \boxed{コ}c$である。
また、$f(x)$の最小値が$20$で、
$f(c)=28$かつ$f(10)=31$を満たす$a$の値は
$\boxed{サ}$と$\boxed{シ}$である。
ただし、$\boxed{サ} \lt \boxed{シ}$とする。
$2025$年早稲田大学人間科学部過去問題
福田の数学〜早稲田大学2025人間科学部第1問(3)〜球面が平面から切り取る領域の面積

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(3)座標空間における$2$点
$\left(\dfrac{\sqrt{35}}{2},5,10\right),\left(-\dfrac{\sqrt{35}}{2},10,-4\right)$
を直径の両端とする球面$S$がある。
球面$S$が$xy$平面を切り取る領域の面積は
$\boxed{カ}\pi$である。
また、球面$S$が$z$軸を切り取る線分の長さは
$\sqrt{\boxed{キ}}$である。
$2025$年早稲田大学人間科学部過去問題
この動画を見る
$\boxed{1}$
(3)座標空間における$2$点
$\left(\dfrac{\sqrt{35}}{2},5,10\right),\left(-\dfrac{\sqrt{35}}{2},10,-4\right)$
を直径の両端とする球面$S$がある。
球面$S$が$xy$平面を切り取る領域の面積は
$\boxed{カ}\pi$である。
また、球面$S$が$z$軸を切り取る線分の長さは
$\sqrt{\boxed{キ}}$である。
$2025$年早稲田大学人間科学部過去問題
福田の数学〜早稲田大学2025人間科学部第1問(2)〜ルートの2個ある無理方程式の解法

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(2)方程式
$\sqrt{x+510}+\sqrt{x+822}=52$
の解は$x=\boxed{オ}$である。
$2025$年早稲田大学人間科学部過去問題
この動画を見る
$\boxed{1}$
(2)方程式
$\sqrt{x+510}+\sqrt{x+822}=52$
の解は$x=\boxed{オ}$である。
$2025$年早稲田大学人間科学部過去問題
福田の数学〜早稲田大学2025人間科学部第1問(1)〜4次式の因数分解と未定係数法

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(1)整式$x^4-13x^2+18x-5$を整数係数の
範囲で因数分解すると
$(x^2+\boxed{ア} x+\boxed{イ})(x^2+\boxed{ウ}x+\boxed{エ})$
となる。
ただし、$\boxed{ア}\lt \boxed{ウ}$とする。
$2025$年早稲田大学人間科学部過去問題
この動画を見る
$\boxed{1}$
(1)整式$x^4-13x^2+18x-5$を整数係数の
範囲で因数分解すると
$(x^2+\boxed{ア} x+\boxed{イ})(x^2+\boxed{ウ}x+\boxed{エ})$
となる。
ただし、$\boxed{ア}\lt \boxed{ウ}$とする。
$2025$年早稲田大学人間科学部過去問題
福田の数学〜九州大学2025文系第2問〜円周上の2点との距離の2乗の和の最大値

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#三角関数#三角関数とグラフ#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
半径$1$の円周$C$上の$2$点$A,B$は
$AB=\sqrt3$をみたすとする。
点$P$が円周$C$上を動くとき、
$AP^2+BP^2$の最大値を求めよ。
$2025$年九州大学文系過去問題
この動画を見る
$\boxed{2}$
半径$1$の円周$C$上の$2$点$A,B$は
$AB=\sqrt3$をみたすとする。
点$P$が円周$C$上を動くとき、
$AP^2+BP^2$の最大値を求めよ。
$2025$年九州大学文系過去問題
福田の数学〜九州大学2025理系第5問〜3次方程式の解と確率

単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#複素数と方程式#場合の数#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
$1$個のさいころを$3$回続けて投げ、
出る目を順に$a,b,c$とする。
整式$f(x)=(x^2-ax+b)(x-c)$
について、以下の問いに答えよ。
(1)$f(x)=0$をみたす実数$x$の個数が
$1$個である確率を求めよ。
(2)$f(x)=0$をみたす自然数$x$の個数が
$3$個である確率を求めよ。
$2025$年九州大学理系過去問題
この動画を見る
$\boxed{5}$
$1$個のさいころを$3$回続けて投げ、
出る目を順に$a,b,c$とする。
整式$f(x)=(x^2-ax+b)(x-c)$
について、以下の問いに答えよ。
(1)$f(x)=0$をみたす実数$x$の個数が
$1$個である確率を求めよ。
(2)$f(x)=0$をみたす自然数$x$の個数が
$3$個である確率を求めよ。
$2025$年九州大学理系過去問題
福田の数学〜九州大学2025理系第3問〜剰余類と不定方程式の整数解

単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
以下の問いに答えよ。
(1)$n$を整数とするとき、$n^2$を$8$で割った
余りは$0,1,4$のいずれかであることを示せ。
(2)$2^m=n^2+3$をみたす$0$以上の整数の組
$(m,n)$をすべて求めよ。
$2025$年九州大学理系過去問題
この動画を見る
$\boxed{3}$
以下の問いに答えよ。
(1)$n$を整数とするとき、$n^2$を$8$で割った
余りは$0,1,4$のいずれかであることを示せ。
(2)$2^m=n^2+3$をみたす$0$以上の整数の組
$(m,n)$をすべて求めよ。
$2025$年九州大学理系過去問題
福田の数学〜九州大学2025理系第2問〜定積分の計算

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
以下の問いに答えよ。
(1)$y=\tan x$とするとき、
$\dfrac{dy}{dx}$を$y$の整式で表せ。
(2)次の定積分を求めよ。
$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{\tan^4x-\tan^2 x-2}{\tan^2x-4}dx$
$2025$年九州大学理系過去問題
この動画を見る
$\boxed{2}$
以下の問いに答えよ。
(1)$y=\tan x$とするとき、
$\dfrac{dy}{dx}$を$y$の整式で表せ。
(2)次の定積分を求めよ。
$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{\tan^4x-\tan^2 x-2}{\tan^2x-4}dx$
$2025$年九州大学理系過去問題
福田の数学〜九州大学2025理系第1問〜平面に垂直なベクトルの絶対値の最小

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
座標空間内の$3$点$A(1,1,-5),B(-1,-1,7),C(1,-1,3)$を
通る平面を$\alpha$とする。
点$P(a,b,t)$を通り$\alpha$に垂直な直線と
$xy$平面との交点を$Q$とする。
(1)点$Q$の座標を求めよ。
(2)$t$がすべての実数値をとって変化するときの
$OQ$の最小値が$1$以下となるような
$a,b$の条件を求めよ。
ただし、$O$は原点である。
$2025$年九州大学理系過去問題
この動画を見る
$\boxed{1}$
座標空間内の$3$点$A(1,1,-5),B(-1,-1,7),C(1,-1,3)$を
通る平面を$\alpha$とする。
点$P(a,b,t)$を通り$\alpha$に垂直な直線と
$xy$平面との交点を$Q$とする。
(1)点$Q$の座標を求めよ。
(2)$t$がすべての実数値をとって変化するときの
$OQ$の最小値が$1$以下となるような
$a,b$の条件を求めよ。
ただし、$O$は原点である。
$2025$年九州大学理系過去問題
福田の数学〜神戸大学2025文系第3問〜単位円周上の2点と確率

単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#場合の数#三角関数#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
$1$個のさいころを$2$回続けて投げるとき、
出た目の数を順に$a,b$とおく。
座標平面上の$2$点$A,B$を
$A\left(\cos \dfrac{a}{6}\pi,\sin\dfrac{a}{6}\pi\right),\quad B\left(\cos \dfrac{b+6}{6}\pi,\sin\dfrac{b+6}{6}\pi\right)$
とし、原点を$O$とする。
以下の問いに答えよ。
(1)$3$点$O,A,B$が一直線上にある確率を求めよ。
(2)$3$点$O,A,B$が一直線上になく、かつ
三角形$OAB$の面積が$\dfrac{1}{4}$以下である
確率を求めよ。
(3)$2$点$A,B$間の距離が$1$より
大きい確率を求めよ。
$2025$年神戸大学文系過去問題
この動画を見る
$\boxed{3}$
$1$個のさいころを$2$回続けて投げるとき、
出た目の数を順に$a,b$とおく。
座標平面上の$2$点$A,B$を
$A\left(\cos \dfrac{a}{6}\pi,\sin\dfrac{a}{6}\pi\right),\quad B\left(\cos \dfrac{b+6}{6}\pi,\sin\dfrac{b+6}{6}\pi\right)$
とし、原点を$O$とする。
以下の問いに答えよ。
(1)$3$点$O,A,B$が一直線上にある確率を求めよ。
(2)$3$点$O,A,B$が一直線上になく、かつ
三角形$OAB$の面積が$\dfrac{1}{4}$以下である
確率を求めよ。
(3)$2$点$A,B$間の距離が$1$より
大きい確率を求めよ。
$2025$年神戸大学文系過去問題
福田の数学〜神戸大学2025文系第2問〜小数部分と命題の証明

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
実数$a$に対して、
$a$を超えない最大の整数を$k$とするとき、
$a-k$を$a$の小数部分という。
$n$を自然数とし、$a_n=\sqrt{n^2+1}$とおく。
以下の問いに答えよ。
(1)$a_n \lt n+1$が成り立つことを示せ。
(2)$b_n$を$a_n$の小数部分とする。
$b_n$を$n$を用いて表せ。
(3)$b_n$を(2)で定めたものとする。
$m,n$を異なる$2$つの自然数とするとき、
$b_m \neq b_n$であることを示せ。
$2025$年神戸大学文系過去問題
この動画を見る
$\boxed{2}$
実数$a$に対して、
$a$を超えない最大の整数を$k$とするとき、
$a-k$を$a$の小数部分という。
$n$を自然数とし、$a_n=\sqrt{n^2+1}$とおく。
以下の問いに答えよ。
(1)$a_n \lt n+1$が成り立つことを示せ。
(2)$b_n$を$a_n$の小数部分とする。
$b_n$を$n$を用いて表せ。
(3)$b_n$を(2)で定めたものとする。
$m,n$を異なる$2$つの自然数とするとき、
$b_m \neq b_n$であることを示せ。
$2025$年神戸大学文系過去問題
福田の数学〜神戸大学2025文系第1問〜3次方程式が異なる3個の実数解をもつ条件

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
$a$を実数とする。
$f(x)=2x^3+ax^2-1$とおくとき、以下の問いに答えよ。
(1)方程式$f(x)=0$は$x=-1$に解にもつとする。
このとき、$a$の値を求め、
方程式$f(x)=0$の解をすべて求めよ。
(2)$a$の値を(1)で求めたものとする。
関数$f(x)$の極限を求めよ。
(3)方程式$f(x)=0$が異なる$3$つの実数解を
もつような$a$の値の範囲を求めよ。
$2025$年神戸大学文系過去問題
この動画を見る
$\boxed{1}$
$a$を実数とする。
$f(x)=2x^3+ax^2-1$とおくとき、以下の問いに答えよ。
(1)方程式$f(x)=0$は$x=-1$に解にもつとする。
このとき、$a$の値を求め、
方程式$f(x)=0$の解をすべて求めよ。
(2)$a$の値を(1)で求めたものとする。
関数$f(x)$の極限を求めよ。
(3)方程式$f(x)=0$が異なる$3$つの実数解を
もつような$a$の値の範囲を求めよ。
$2025$年神戸大学文系過去問題
福田の数学〜神戸大学2025理系第5問〜連続と微分可能と曲線の長さ

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
連続関数$f(x)$は$x \geqq 0$で$f(x) \geqq 0$を満たし、
$x \gt 0$で微分可能であり、その導関数$f'(x)$は
連続であるとする。
$t \geqq 1$を満たす$t$に対して、
$y=f(x) \ (1\leqq x \leqq t)$で表される曲線の長さを
$h(t)$とし、$t=1$のときは$h(1)=0$とする。
以下の問いに答えよ。
(1)$t\gt 1$とする。
開区間$(1,t)$で常に$f(x)-xf'(x)=0$が成り立つならば、
閉区間$[1,t]$で$\dfrac{f(x)}{x}$は定数であることを示せ。
(2)$t\geqq 1$を満たす任意の$t$に対して、
$g(t)=h(t)+2$が成り立つとする。
このとき、$f(1)$の値を求めよ。
また、$t\geqq 1$のとき$f(t)$を$t$を用いて表せ。
$2025$年神戸大学理系過去問題
この動画を見る
$\boxed{5}$
連続関数$f(x)$は$x \geqq 0$で$f(x) \geqq 0$を満たし、
$x \gt 0$で微分可能であり、その導関数$f'(x)$は
連続であるとする。
$t \geqq 1$を満たす$t$に対して、
$y=f(x) \ (1\leqq x \leqq t)$で表される曲線の長さを
$h(t)$とし、$t=1$のときは$h(1)=0$とする。
以下の問いに答えよ。
(1)$t\gt 1$とする。
開区間$(1,t)$で常に$f(x)-xf'(x)=0$が成り立つならば、
閉区間$[1,t]$で$\dfrac{f(x)}{x}$は定数であることを示せ。
(2)$t\geqq 1$を満たす任意の$t$に対して、
$g(t)=h(t)+2$が成り立つとする。
このとき、$f(1)$の値を求めよ。
また、$t\geqq 1$のとき$f(t)$を$t$を用いて表せ。
$2025$年神戸大学理系過去問題
福田の数学〜神戸大学2025理系第4問〜空間ベクトルと三角形の面積の最小

単元:
#数A#大学入試過去問(数学)#図形の性質#空間ベクトル#三角形の辺の比(内分・外分・二等分線)#空間ベクトル#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$s,t$を実数とする。座標空間に$3$点
$A(-4,-1,0),B(-3,0,-1),P(s,t,-2s+t-1)$がある。
以下の問いに答えよ。
(1)$3$点$A,B,P$は一直線上にないことを示せ。
(2)点$P$から直線$AB$に下ろした垂線を$PH$とする。
点$H$の座標を$s$を用いて表せ。
(3)$s,t$が変化するとき、
三角形$ABP$の面積の最小値を求めよ。
$2025$年神戸大学理系過去問題
この動画を見る
$\boxed{4}$
$s,t$を実数とする。座標空間に$3$点
$A(-4,-1,0),B(-3,0,-1),P(s,t,-2s+t-1)$がある。
以下の問いに答えよ。
(1)$3$点$A,B,P$は一直線上にないことを示せ。
(2)点$P$から直線$AB$に下ろした垂線を$PH$とする。
点$H$の座標を$s$を用いて表せ。
(3)$s,t$が変化するとき、
三角形$ABP$の面積の最小値を求めよ。
$2025$年神戸大学理系過去問題
福田の数学〜神戸大学2025理系第3問〜媒介変数表示で表された曲線

単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#微分法と積分法#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
媒介変数$\theta$を用いて
$x=\sin\theta,y=\cos\theta + \vert \sin\theta \vert \quad (0\leqq \theta \leqq 2\pi)$
で表される曲線を$C$とする。以下の問いに答えよ。
(1)曲線$C$の概形をかけ。
(2)曲線$C$で囲まれた部分の面積を求めよ。
$2025$年神戸大学理系過去問題
この動画を見る
$\boxed{3}$
媒介変数$\theta$を用いて
$x=\sin\theta,y=\cos\theta + \vert \sin\theta \vert \quad (0\leqq \theta \leqq 2\pi)$
で表される曲線を$C$とする。以下の問いに答えよ。
(1)曲線$C$の概形をかけ。
(2)曲線$C$で囲まれた部分の面積を求めよ。
$2025$年神戸大学理系過去問題
福田の数学〜神戸大学2025理系第1問〜曲線と直線の共有点の個数

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
$k$を実数とする。
$f(x)$と$g(x)$を
$f(x) = \vert x^3-x \vert,\quad g(x)=k(x+1)$
とおき、曲線$y=f(x)$を$C$、
直線$y=g(x)$を$\ell$とする。以下の問いに答えよ。
(1)曲線$C$の概形をかけ。
ただし、関数$f(x)$の極大値を調べる必要はない。
(2)曲線$C$と直線$\ell$がちょうど$4$つの
共有点をもつような$k$の値を求めよ。
$2025$年神戸大学理系過去問題
この動画を見る
$\boxed{1}$
$k$を実数とする。
$f(x)$と$g(x)$を
$f(x) = \vert x^3-x \vert,\quad g(x)=k(x+1)$
とおき、曲線$y=f(x)$を$C$、
直線$y=g(x)$を$\ell$とする。以下の問いに答えよ。
(1)曲線$C$の概形をかけ。
ただし、関数$f(x)$の極大値を調べる必要はない。
(2)曲線$C$と直線$\ell$がちょうど$4$つの
共有点をもつような$k$の値を求めよ。
$2025$年神戸大学理系過去問題
福田の数学〜大阪大学2025文系第3問〜放物線と接線が作る面積の最大値

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
座標平面において、$y=x^2-1$で表される放物線を
$C$とする。
$C$上の点$P$における$C$の接線を$\ell$とする。
ただし、点$P$は$y$軸上にはないものとする。
$O$を原点とし、放物線$C$と線分$OP$をよび
$y$軸で囲まれた図形の面積を$S$、
放物線$C$と接線$\ell$および$y$軸で囲まれた図形の
面積を$T$とする。
$S-T$の最大値を求めよ。
$2025$年大阪大学文系過去問題
この動画を見る
$\boxed{3}$
座標平面において、$y=x^2-1$で表される放物線を
$C$とする。
$C$上の点$P$における$C$の接線を$\ell$とする。
ただし、点$P$は$y$軸上にはないものとする。
$O$を原点とし、放物線$C$と線分$OP$をよび
$y$軸で囲まれた図形の面積を$S$、
放物線$C$と接線$\ell$および$y$軸で囲まれた図形の
面積を$T$とする。
$S-T$の最大値を求めよ。
$2025$年大阪大学文系過去問題
福田の数学〜大阪大学2025文系第2問〜漸化式と数列の和

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
次の条件によって定められる数列$\{ a_n\}$がある。
$a_1=1,a_{n+1}=\dfrac{2n-1}{2n}a_n \quad (n=1,2,3,\cdots)$
(1)正の整数$k,\ell$に対して
$\dfrac{k}{k+\ell-1}a_{k+1}a_{\ell}+\dfrac{\ell}{k+\ell-1}a_ka_{\ell+1}=a_ka_{\ell}$
が成り立つことを示せ。
(2)正の整数$m$に対して
$\displaystyle \sum_{k=1}^{m} a_ka_{m-K+1}=1$
が成り立つことを示せ。
$2025$年大阪大学文系過去問題
この動画を見る
$\boxed{2}$
次の条件によって定められる数列$\{ a_n\}$がある。
$a_1=1,a_{n+1}=\dfrac{2n-1}{2n}a_n \quad (n=1,2,3,\cdots)$
(1)正の整数$k,\ell$に対して
$\dfrac{k}{k+\ell-1}a_{k+1}a_{\ell}+\dfrac{\ell}{k+\ell-1}a_ka_{\ell+1}=a_ka_{\ell}$
が成り立つことを示せ。
(2)正の整数$m$に対して
$\displaystyle \sum_{k=1}^{m} a_ka_{m-K+1}=1$
が成り立つことを示せ。
$2025$年大阪大学文系過去問題
福田の数学〜大阪大学2025理系第5問〜確率漸化式

単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
投げたときに表と裏の出る確率が
それぞれ$\dfrac{1}{2}$のコインがある。
$A,B,C$の$3$文字を$BAC$のように$1$個ずつ
すべて並べて得られる文字列に対して、
コインを投げて次の操作を行う。
・表がで出たら文字列の左から$1$文字目と
$2$文字目を入れかえる。
・裏がで出たら文字列の左から$2$文字目と
$3$文字目を入れかえる。
例えば、文字列が$BAC$であるときに、
$2$回続けてコインを投げて表、裏の順に出た
とすると、文字列は$BAC$から$ABC$を経て
$ACB$となる。
最初の文字列は$ABC$であるとする。
コインを$n$回続けて投げたあとの文字列が
$ABC$である確率を$p_n$とし、
$BCA$である確率を$q_n$とする。
(1)$k$を正の整数とするとき、
$p_{2k}-q_{2k}$を求めよ。
(2)$n$を正の整数とするとき、
$p_n$を求めよ。
$2025$年大阪大学理系過去問題
この動画を見る
$\boxed{5}$
投げたときに表と裏の出る確率が
それぞれ$\dfrac{1}{2}$のコインがある。
$A,B,C$の$3$文字を$BAC$のように$1$個ずつ
すべて並べて得られる文字列に対して、
コインを投げて次の操作を行う。
・表がで出たら文字列の左から$1$文字目と
$2$文字目を入れかえる。
・裏がで出たら文字列の左から$2$文字目と
$3$文字目を入れかえる。
例えば、文字列が$BAC$であるときに、
$2$回続けてコインを投げて表、裏の順に出た
とすると、文字列は$BAC$から$ABC$を経て
$ACB$となる。
最初の文字列は$ABC$であるとする。
コインを$n$回続けて投げたあとの文字列が
$ABC$である確率を$p_n$とし、
$BCA$である確率を$q_n$とする。
(1)$k$を正の整数とするとき、
$p_{2k}-q_{2k}$を求めよ。
(2)$n$を正の整数とするとき、
$p_n$を求めよ。
$2025$年大阪大学理系過去問題
福田の数学〜大阪大学2025理系第4問〜不等式の証明と関数の極限

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
次の問いに答えよ。
(1)$t\gt 0$のとき
$-\dfrac{1}{t}\lt \displaystyle \int_{t}^{2t} \dfrac{\sin x}{x^2}dx \lt \dfrac{1}{t}$
が成り立つことを示せ。
(2)$\displaystyle \lim_{t\to\infty}\displaystyle \dfrac{\cos x}{x}dx=0$を示せ。
(3)$f(x)=\sin\left(\dfrac{3x}{2}\right)\sin\left(\dfrac{x}{2}\right)$おく。
$\displaystyle \lim_{t\to\infty}\displaystyle \int_{1}^{t} \dfrac{f(x)}{x}dx=\dfrac{1}{2} \displaystyle \int_{1}^{2} \dfrac{\cos x}{x} dx$
を示せ。
$2025$年大阪大学理系過去問題
この動画を見る
$\boxed{4}$
次の問いに答えよ。
(1)$t\gt 0$のとき
$-\dfrac{1}{t}\lt \displaystyle \int_{t}^{2t} \dfrac{\sin x}{x^2}dx \lt \dfrac{1}{t}$
が成り立つことを示せ。
(2)$\displaystyle \lim_{t\to\infty}\displaystyle \dfrac{\cos x}{x}dx=0$を示せ。
(3)$f(x)=\sin\left(\dfrac{3x}{2}\right)\sin\left(\dfrac{x}{2}\right)$おく。
$\displaystyle \lim_{t\to\infty}\displaystyle \int_{1}^{t} \dfrac{f(x)}{x}dx=\dfrac{1}{2} \displaystyle \int_{1}^{2} \dfrac{\cos x}{x} dx$
を示せ。
$2025$年大阪大学理系過去問題
福田の数学〜大阪大学2025理系第3問〜空間図形と最大最小の軌跡

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#微分法と積分法#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
座標空間に$3$点$O(0,0,0),A(0,1,1),B(x,y,0)$がある。
$\angle OAP=30°$かつ$y\geqq 0$を満たすように
点$P$が動くとき、
$(x+1)(y+1)$の最大値と最小値を求めよ。
$2025$年大阪大学理系過去問題
この動画を見る
$\boxed{3}$
座標空間に$3$点$O(0,0,0),A(0,1,1),B(x,y,0)$がある。
$\angle OAP=30°$かつ$y\geqq 0$を満たすように
点$P$が動くとき、
$(x+1)(y+1)$の最大値と最小値を求めよ。
$2025$年大阪大学理系過去問題
福田の数学〜大阪大学2025理系第2問〜3次関数の極値と変曲点の軌跡

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
$p$と$m$を実数とし、
関数$f(x)=x^3+3px^2+3mx$は
$x=\alpha$で極大値をとり、
$x=\beta$で極小値をとるとする。
(1)$f(\alpha)-f(\beta)$を$p$と$m$を用いて表せ。
(2)$p$と$m$が$f(\alpha)-f(\beta)=4$を
満たしながら動くとき、
曲線$y=f(x)$の変曲点の軌跡を求めよ。
$2025$年大阪大学理系過去問題
この動画を見る
$\boxed{2}$
$p$と$m$を実数とし、
関数$f(x)=x^3+3px^2+3mx$は
$x=\alpha$で極大値をとり、
$x=\beta$で極小値をとるとする。
(1)$f(\alpha)-f(\beta)$を$p$と$m$を用いて表せ。
(2)$p$と$m$が$f(\alpha)-f(\beta)=4$を
満たしながら動くとき、
曲線$y=f(x)$の変曲点の軌跡を求めよ。
$2025$年大阪大学理系過去問題
福田の数学〜大阪大学2025理系第1問〜平面図形とベクトルの証明

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
平面上の三角形$OAB$を考える。
$\angle AOB$は鋭角、$OA=3,OB=t$とする。
また、点$A$から直線$OB$に下ろした垂線と
直線$OB$の交点を$C$とし、$OC=1$とする。
線分$AB$を$2:1$に内分する点を$P$、点$A$から
直線$OP$に下ろした垂線と直線$OB$との交点を
$R$とする。
(1)内積$\overrightarrow{OA}・\overrightarrow{OB}$を$t$を用いて表せ。
(2)線分$OR$の長さを$t$を用いて表せ。
(3)線分$OB$の中点を$M$とする。
点$R$が線分$MB$上にあるとき、
$t$のとりうる値の範囲を求めよ。
$2025$年大阪大学理系過去問題
この動画を見る
$\boxed{1}$
平面上の三角形$OAB$を考える。
$\angle AOB$は鋭角、$OA=3,OB=t$とする。
また、点$A$から直線$OB$に下ろした垂線と
直線$OB$の交点を$C$とし、$OC=1$とする。
線分$AB$を$2:1$に内分する点を$P$、点$A$から
直線$OP$に下ろした垂線と直線$OB$との交点を
$R$とする。
(1)内積$\overrightarrow{OA}・\overrightarrow{OB}$を$t$を用いて表せ。
(2)線分$OR$の長さを$t$を用いて表せ。
(3)線分$OB$の中点を$M$とする。
点$R$が線分$MB$上にあるとき、
$t$のとりうる値の範囲を求めよ。
$2025$年大阪大学理系過去問題
福田の数学〜立教大学2025理学部第3問〜指数関数と円でできる領域の面積

単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
$a,p$は正の実数とする。
座標平面上の曲線$C_1:y=e^x$と$C_1$上の点
$(p,e^p)$がある。
$P$における$C_1$の法線を$\ell,\ell$と$x$軸の
交点を$A(a,0)$、$A$を中心とする半径$r$の円を
$C_2$とする。
$P$が$C_1$と$C_2$のただ一つの共有点であるとき、
次の問いに答えよ。
(1)$\ell$の方程式を$p$を用いて表せ。
(2)$a$を$p$を用いて表せ。
(3)$r$を$p$を用いて表せ。
(4)$\angle OAP=\dfrac{\pi}{6}$のとき、$p$の値を求めよ。
(5)$p$を(4)で求めた値とするとき、
次の不等式の表す領域$D$の面積$S$を求めよ。
$-2 \leqq x \leqq p,\ y\geqq 0,\ y\leqq e^x,$
$(x-a)^2+y^2\geqq r^2$
$2025$年立教大学理学部過去問題
この動画を見る
$\boxed{3}$
$a,p$は正の実数とする。
座標平面上の曲線$C_1:y=e^x$と$C_1$上の点
$(p,e^p)$がある。
$P$における$C_1$の法線を$\ell,\ell$と$x$軸の
交点を$A(a,0)$、$A$を中心とする半径$r$の円を
$C_2$とする。
$P$が$C_1$と$C_2$のただ一つの共有点であるとき、
次の問いに答えよ。
(1)$\ell$の方程式を$p$を用いて表せ。
(2)$a$を$p$を用いて表せ。
(3)$r$を$p$を用いて表せ。
(4)$\angle OAP=\dfrac{\pi}{6}$のとき、$p$の値を求めよ。
(5)$p$を(4)で求めた値とするとき、
次の不等式の表す領域$D$の面積$S$を求めよ。
$-2 \leqq x \leqq p,\ y\geqq 0,\ y\leqq e^x,$
$(x-a)^2+y^2\geqq r^2$
$2025$年立教大学理学部過去問題
福田の数学〜立教大学2025理学部第2問〜三角関数の最大最小の定番

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
実数$x$に対し、関数$f(x)$を
$f(x)=\sin^3x+\cos^3x+4sin x \cos x$
により定める。
また、$t=\sin x+\cos x$とおく。次の問いに答えよ。
(1)$\sin x \cos x$を$t$を用いて表せ。
(2)$f(x)$を$t$を用いて表せ。
(3)$x$がすべてに実数を動くとき、
$t$のとりうる値の範囲を求めよ。
(4)$x$がすべてに実数を動くとき、
$f(x)$の最大値と最小値をそれぞれ求めよ。
$2025$年立教大学理学部過去問題
この動画を見る
$\boxed{2}$
実数$x$に対し、関数$f(x)$を
$f(x)=\sin^3x+\cos^3x+4sin x \cos x$
により定める。
また、$t=\sin x+\cos x$とおく。次の問いに答えよ。
(1)$\sin x \cos x$を$t$を用いて表せ。
(2)$f(x)$を$t$を用いて表せ。
(3)$x$がすべてに実数を動くとき、
$t$のとりうる値の範囲を求めよ。
(4)$x$がすべてに実数を動くとき、
$f(x)$の最大値と最小値をそれぞれ求めよ。
$2025$年立教大学理学部過去問題
福田の数学〜立教大学2025理学部第1問(4)〜確率の基本的な性質

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(4)箱の中に緑色のカードが$5$枚、
黄色のカードが$4$枚、赤色のカードが$3$枚
入っている。
箱から無作為にカードを$3$枚取り出すとき、
$3$枚とも同じ色である確率は$\boxed{オ}$、
$3$枚の色がすべて異なる確率は$\boxed{カ}$、
$2$枚が同じ色であり、かつ、
残りの$1$枚が他の$2$枚と異なる色である確率は
$\boxed{キ}$である。
$2025$年立教大学理学部過去問題
この動画を見る
$\boxed{1}$
(4)箱の中に緑色のカードが$5$枚、
黄色のカードが$4$枚、赤色のカードが$3$枚
入っている。
箱から無作為にカードを$3$枚取り出すとき、
$3$枚とも同じ色である確率は$\boxed{オ}$、
$3$枚の色がすべて異なる確率は$\boxed{カ}$、
$2$枚が同じ色であり、かつ、
残りの$1$枚が他の$2$枚と異なる色である確率は
$\boxed{キ}$である。
$2025$年立教大学理学部過去問題
福田の数学〜立教大学2025理学部第1問(3)〜定積分の計算

単元:
#大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(3)定積分$\displaystyle \int_{0}^{\frac{7}{6}\pi}\sin x \sin 2x \ dx$の値は
$\boxed{エ}$である。
$2025$年立教大学理学部過去問題
この動画を見る
$\boxed{1}$
(3)定積分$\displaystyle \int_{0}^{\frac{7}{6}\pi}\sin x \sin 2x \ dx$の値は
$\boxed{エ}$である。
$2025$年立教大学理学部過去問題
