図形と計量
引っかけ問題!? 円 斜線部の面積を求めよ 慶應義塾
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
半径$\sqrt 2$の円
斜線部の面積は?
*図は動画内参照
慶應義塾高等学校
この動画を見る
半径$\sqrt 2$の円
斜線部の面積は?
*図は動画内参照
慶應義塾高等学校
正方形と150度
おうぎ形と長方形
福田の数学〜上智大学2022年理工学部第2問〜三角比と通過領域の体積
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
tを実数とする。次の条件(★)を満たす$\triangle ABC$を考える。
(★)$AC=t,\ BC=1$を満たし、$\angle BAC$の2等分線と辺BCの交点をDとおくと、
$\cos\angle DAC=\frac{\sqrt3}{3}$である。
(1)$\cos\angle DAC=\frac{\boxed{カ}}{\boxed{キ}}$である。
(2)tの取りうる範囲を$t_1\lt t \lt t_2$とするとき、$t_1=\boxed{あ},t_2=\boxed{い}$である。
$\boxed{あ},\ \boxed{い}$の選択肢
$(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{3}\ \ \ (\textrm{c})\frac{1}{2}\ \ \ (\textrm{d})\frac{\sqrt3}{3}\ \ \ (\textrm{e})\frac{2}{3}$
$ (\textrm{f})1\ \ \ (\textrm{g})\frac{2\sqrt3}{2}\ \ \ (\textrm{h})\sqrt3\ \ \ (\textrm{i})2\ \ \ (\textrm{j})3$
(3)辺ABの長さをtの式で表すと$AB=\frac{\boxed{ク}}{\boxed{ケ}}t+$
$\sqrt{1+\frac{\boxed{コ}}{\boxed{サ}}t^2}$である。
(4)$\triangle ABC$の面積は$t=\frac{\sqrt{\boxed{シ}}}{\boxed{ス}}$
で最大値$\frac{\sqrt{\boxed{セ}}}{\boxed{ソ}}$をとる。
(5)$t_1,t_2$を(2)で定めた値とする。
$t_1 \lt t \lt t_2$の範囲で、xyz-座標空間内の平面z=t上に、条件(★)を満たす
$\triangle ABC$が、$B(0,0,t),C(0,1,t)$を満たし、Aのx座標が正であるように
おかれている。まgた、$B_1(0,0,t_1),C_1(0,1,t_1),B_2(0,0,t_2),C_2(0,1,t_2)$と
おく。
$\triangle ABC$を$t_1 \lt t \lt t_2$の範囲で動かしたときに通過してできる図形に線分$B_1C_1$、
線分$B_2C_2$を付け加えた立体の体積は$\frac{\sqrt{\boxed{タ}}}{\boxed{チ}}$である。
この動画を見る
tを実数とする。次の条件(★)を満たす$\triangle ABC$を考える。
(★)$AC=t,\ BC=1$を満たし、$\angle BAC$の2等分線と辺BCの交点をDとおくと、
$\cos\angle DAC=\frac{\sqrt3}{3}$である。
(1)$\cos\angle DAC=\frac{\boxed{カ}}{\boxed{キ}}$である。
(2)tの取りうる範囲を$t_1\lt t \lt t_2$とするとき、$t_1=\boxed{あ},t_2=\boxed{い}$である。
$\boxed{あ},\ \boxed{い}$の選択肢
$(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{3}\ \ \ (\textrm{c})\frac{1}{2}\ \ \ (\textrm{d})\frac{\sqrt3}{3}\ \ \ (\textrm{e})\frac{2}{3}$
$ (\textrm{f})1\ \ \ (\textrm{g})\frac{2\sqrt3}{2}\ \ \ (\textrm{h})\sqrt3\ \ \ (\textrm{i})2\ \ \ (\textrm{j})3$
(3)辺ABの長さをtの式で表すと$AB=\frac{\boxed{ク}}{\boxed{ケ}}t+$
$\sqrt{1+\frac{\boxed{コ}}{\boxed{サ}}t^2}$である。
(4)$\triangle ABC$の面積は$t=\frac{\sqrt{\boxed{シ}}}{\boxed{ス}}$
で最大値$\frac{\sqrt{\boxed{セ}}}{\boxed{ソ}}$をとる。
(5)$t_1,t_2$を(2)で定めた値とする。
$t_1 \lt t \lt t_2$の範囲で、xyz-座標空間内の平面z=t上に、条件(★)を満たす
$\triangle ABC$が、$B(0,0,t),C(0,1,t)$を満たし、Aのx座標が正であるように
おかれている。まgた、$B_1(0,0,t_1),C_1(0,1,t_1),B_2(0,0,t_2),C_2(0,1,t_2)$と
おく。
$\triangle ABC$を$t_1 \lt t \lt t_2$の範囲で動かしたときに通過してできる図形に線分$B_1C_1$、
線分$B_2C_2$を付け加えた立体の体積は$\frac{\sqrt{\boxed{タ}}}{\boxed{チ}}$である。
【中学からの!】タンジェントを含む計算:三角比~全国入試問題解法
単元:
#数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\triangle ABC$において
$a \tan A=b \tan B$ならばどんな三角形か.
この動画を見る
$\triangle ABC$において
$a \tan A=b \tan B$ならばどんな三角形か.
2つの長方形と面積
気付けば一瞬!! 関数は図形の問題として捉えよ
正方形と2つの正三角形の面積の和 2通りで解説
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2つの正三角形と正方形
全体の面積=?
*図は動画内参照
この動画を見る
2つの正三角形と正方形
全体の面積=?
*図は動画内参照
【中学からの!】余弦定理(2):三角比~全国入試問題解法
単元:
#数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\triangle ABC$において
$ a \cos A=b \cos B$ならばどんな三角形か.
この動画を見る
$\triangle ABC$において
$ a \cos A=b \cos B$ならばどんな三角形か.
福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量
単元:
#数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師:
福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、$AP=t\ (0 \lt t \lt 3)$を満たす点Pをとる。
中心を$O$とする半径1の円Oが、線分ABと点Pで接しているとする。
$\alpha=\angle OAB,\ \beta=\angle OBA$
とおく。$\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)$を$t$で表すと、
$\tan\alpha=\boxed{あ},\ \tan\beta=\boxed{い},$
$\ \tan(\alpha+\beta)=\boxed{う}$である。
$0 \lt \alpha+\beta \lt \frac{\pi}{2}$であるようなtの範囲は$\boxed{え}$である。
tは$\boxed{え}$の範囲にあるとする。点$A,\ B$から円Oに引いた接線の接点のうち、
Pでないものをそれぞれ$Q,\ R$とすると、$\angle QAB+\angle RBA \lt \pi$である。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと$\ \boxed{お}$である。
また、$t$が$\boxed{え}$の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は$\boxed{か}$である。
2022明治大学理工学部過去問
この動画を見る
平面上の長さ3の線分AB上に、$AP=t\ (0 \lt t \lt 3)$を満たす点Pをとる。
中心を$O$とする半径1の円Oが、線分ABと点Pで接しているとする。
$\alpha=\angle OAB,\ \beta=\angle OBA$
とおく。$\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)$を$t$で表すと、
$\tan\alpha=\boxed{あ},\ \tan\beta=\boxed{い},$
$\ \tan(\alpha+\beta)=\boxed{う}$である。
$0 \lt \alpha+\beta \lt \frac{\pi}{2}$であるようなtの範囲は$\boxed{え}$である。
tは$\boxed{え}$の範囲にあるとする。点$A,\ B$から円Oに引いた接線の接点のうち、
Pでないものをそれぞれ$Q,\ R$とすると、$\angle QAB+\angle RBA \lt \pi$である。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと$\ \boxed{お}$である。
また、$t$が$\boxed{え}$の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は$\boxed{か}$である。
2022明治大学理工学部過去問
正12角形の一辺の長さと面積 立教新座
単元:
#数学(中学生)#中1数学#数Ⅰ#数A#図形の性質#図形と計量#平面図形#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
正六角形と正十二角形
正十二角形の1辺の長さと面積は?
立教新座高等学校
この動画を見る
正六角形と正十二角形
正十二角形の1辺の長さと面積は?
立教新座高等学校
瞬殺せよ!傾き
【中学からの!】余弦定理(1):三角比~全国入試問題解法
単元:
#数学(中学生)#図形と計量#三角比への応用(正弦・余弦・面積)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\triangle ABC$において
$ a \cos B=b \cos A$ならばどんな三角形か.
この動画を見る
$\triangle ABC$において
$ a \cos B=b \cos A$ならばどんな三角形か.
福田の数学〜明治大学2022年全学部統一入試12AB第1問(4)〜角の二等分線と辺の長さの軽量
単元:
#数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
(4)三角形$ABC$の$\angle A$の二等分線と辺$BC$との交点をDとする。
$AB=8,\ AC=3,\ AD=4$とするとき、
$BD:CD=\boxed{\ \ ソ\ \ }:\boxed{\ \ タ\ \ }$であり、
$BC=\frac{\boxed{\ \ チツ\ \ }\sqrt{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }}$である。
2022明治大学全統過去問
この動画を見る
(4)三角形$ABC$の$\angle A$の二等分線と辺$BC$との交点をDとする。
$AB=8,\ AC=3,\ AD=4$とするとき、
$BD:CD=\boxed{\ \ ソ\ \ }:\boxed{\ \ タ\ \ }$であり、
$BC=\frac{\boxed{\ \ チツ\ \ }\sqrt{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }}$である。
2022明治大学全統過去問
【超便利】三角比のあの面倒な公式は覚えなくていい【高校数学】 #Shorts
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角比の導出方法に関して解説していきます。
この動画を見る
三角比の導出方法に関して解説していきます。
この問題で差がつく!!円の良問 近江高校(滋賀)
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
DE=?
*図は動画内参照
近江高等学校
この動画を見る
DE=?
*図は動画内参照
近江高等学校
【中学から分かる!】正弦定理(2):三角比 特別講義(トッコー)~全国入試問題解法
単元:
#数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\triangle ABC$において,$a \sin A=b \sin B=c \sin C$ならばどんな三角形か.
この動画を見る
$\triangle ABC$において,$a \sin A=b \sin B=c \sin C$ならばどんな三角形か.
気付けば一瞬!! 正六角形 九州学院(熊本)
単元:
#数学(中学生)#数Ⅰ#数A#図形の性質#図形と計量#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
AG:GC=?
*図は動画内参照
九州学院高等学校(改)
この動画を見る
AG:GC=?
*図は動画内参照
九州学院高等学校(改)
決め手は角度。大阪桐蔭
単元:
#数学(中学生)#数Ⅰ#数A#図形の性質#図形と計量#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△CDQ=?
*図は動画内参照
大阪桐蔭高等学校
この動画を見る
△CDQ=?
*図は動画内参照
大阪桐蔭高等学校
【中学から学ぶ!】正弦定理(1):三角比 特別講義~全国入試問題解法
単元:
#数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \triangle ABC$において$ \sin^2 A=\sin^2 B+\sin^2 C$ならばどんな三角形か.
この動画を見る
$ \triangle ABC$において$ \sin^2 A=\sin^2 B+\sin^2 C$ならばどんな三角形か.
三角形の面積の最大値 九州国際大附属(福岡)
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
点Dは$\stackrel{\huge\frown}{AB}$上を動く△ADBの面積の最大値は?
*図は動画内参照
九州国際大学付属高等学校
この動画を見る
点Dは$\stackrel{\huge\frown}{AB}$上を動く△ADBの面積の最大値は?
*図は動画内参照
九州国際大学付属高等学校
福田の数学〜早稲田大学2022年教育学部第3問〜円の外接円の半径と円周上の点と原点の距離の最大最小
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)を座標平面上の点とし、pは0でないとする。\hspace{50pt}\\
AとBを通る直線をlとおく。Oを中心としlに接する円の面積をD_1で表す。\hspace{40pt}\\
また、3点O,A,Bを通る円周で囲まれる円の面積をD_2とおく。次の問いに答えよ。\hspace{4pt}\\
(1)D_1をp,qを使って表せ。\hspace{220pt}\\
(2)点(2,2\sqrt3)を中心とする半径1の円周をCとする。点BがC上を動くときの\hspace{24pt}\\
D_1とD_2の積D_1D_2の最小値と最大値を求めよ。\hspace{130pt}
\end{eqnarray}
2022早稲田大学教育学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)を座標平面上の点とし、pは0でないとする。\hspace{50pt}\\
AとBを通る直線をlとおく。Oを中心としlに接する円の面積をD_1で表す。\hspace{40pt}\\
また、3点O,A,Bを通る円周で囲まれる円の面積をD_2とおく。次の問いに答えよ。\hspace{4pt}\\
(1)D_1をp,qを使って表せ。\hspace{220pt}\\
(2)点(2,2\sqrt3)を中心とする半径1の円周をCとする。点BがC上を動くときの\hspace{24pt}\\
D_1とD_2の積D_1D_2の最小値と最大値を求めよ。\hspace{130pt}
\end{eqnarray}
2022早稲田大学教育学部過去問
福田の数学〜早稲田大学2022年教育学部第1問(3)〜四面体と四面体の共通部分の切り口の面積
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (3)座標空間内の4点(2,0,0),\ (-1,\sqrt3,0),\ (-1,-\sqrt3,0),\ (0,0,2)を頂点と\\
する四面体をP、4点(-2,0,1),\ (1,-\sqrt3,1),\ (1,\sqrt3,1),\ (0,0,-1)を頂点\\
とする四面体をQとする。RをPとQの共通部分とする。Rを平面z=\frac{1}{3}で\\
切ったときの切り口の面積を求めよ。\hspace{145pt}
\end{eqnarray}
2022早稲田大学教育学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{1}}\ (3)座標空間内の4点(2,0,0),\ (-1,\sqrt3,0),\ (-1,-\sqrt3,0),\ (0,0,2)を頂点と\\
する四面体をP、4点(-2,0,1),\ (1,-\sqrt3,1),\ (1,\sqrt3,1),\ (0,0,-1)を頂点\\
とする四面体をQとする。RをPとQの共通部分とする。Rを平面z=\frac{1}{3}で\\
切ったときの切り口の面積を求めよ。\hspace{145pt}
\end{eqnarray}
2022早稲田大学教育学部過去問
円 星稜
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
AC=?
*図は動画内参照
星稜高等学校
この動画を見る
AC=?
*図は動画内参照
星稜高等学校
高校1年生でも解ける!京大の入試問題【京都大学】【数学 入試問題】
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$0≦θ<90°$とする。$x$についての4次方程式
{$x^2-2(\cosθ)x-\cosθ+1$}{$x^2+2(tanθ)x+3$}=0
は虚数解を少なくとも1つ持つことを示せ。
京都大過去問
この動画を見る
$0≦θ<90°$とする。$x$についての4次方程式
{$x^2-2(\cosθ)x-\cosθ+1$}{$x^2+2(tanθ)x+3$}=0
は虚数解を少なくとも1つ持つことを示せ。
京都大過去問
福田の数学〜早稲田大学2022年人間科学部第1問(3)〜三角形の辺の関係から角の関係を求める
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (3)\triangle ABCにおいて、3つの角の大きさをA,B,Cとし、\\
それぞれの対辺の長さをa,b,cとする。\hspace{60pt}\\
5a^2-5b^2+6bc-5c^2=0\hspace{60pt}\\
\\
のとき、\sin2A+\cos2A=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\hspace{60pt}\\
\\
である。\hspace{170pt}
\end{eqnarray}
2022早稲田大学人間科学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{1}}\ (3)\triangle ABCにおいて、3つの角の大きさをA,B,Cとし、\\
それぞれの対辺の長さをa,b,cとする。\hspace{60pt}\\
5a^2-5b^2+6bc-5c^2=0\hspace{60pt}\\
\\
のとき、\sin2A+\cos2A=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\hspace{60pt}\\
\\
である。\hspace{170pt}
\end{eqnarray}
2022早稲田大学人間科学部過去問
【ここからでも楽しめる!】三角比の計算(4):特別講義(トッコー)~全国入試問題解法
単元:
#数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ 2\sin \theta +3\cos \theta=1$のとき,$\theta$は第何象限の角か.
この動画を見る
$ 2\sin \theta +3\cos \theta=1$のとき,$\theta$は第何象限の角か.
【中学からの!】三角比の計算(3):特別講義(トッコー)~全国入試問題解法
単元:
#数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \sin\theta +\sqrt3 \cos \theta=1$のとき,$\sin\theta$の値を求めよ.
ただし,$\theta$は第2象限の角である.
この動画を見る
$ \sin\theta +\sqrt3 \cos \theta=1$のとき,$\sin\theta$の値を求めよ.
ただし,$\theta$は第2象限の角である.
【数学】中高一貫校用問題集:図形と式:軌跡と方程式:2直線の交点の軌跡(直交する場合)
単元:
#数Ⅰ#数Ⅱ#図形と計量#図形と方程式#数学(高校生)
教材:
#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
mが実数全体を取って動くとき、$x+my-1=0,mx-y+2m=0$の交点Pの軌跡を求めよ
この動画を見る
mが実数全体を取って動くとき、$x+my-1=0,mx-y+2m=0$の交点Pの軌跡を求めよ