数Ⅰ
【わかりやすく解説】中学の「展開」をおさらい!
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を展開せよ
(1)$(x+3)(2x-1)$
(2)$(x+3y)(x-3y)$
(3)$(x-5y)^2$
この動画を見る
次の式を展開せよ
(1)$(x+3)(2x-1)$
(2)$(x+3y)(x-3y)$
(3)$(x-5y)^2$
おうぎ形と正方形 令和4年度 愛媛県ラスト問題(改) 数学 2022 入試問題100題解説83問目!
単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
斜線部の面積は?
*図は動画内参照
2022愛媛県
この動画を見る
斜線部の面積は?
*図は動画内参照
2022愛媛県
おうぎ形と正方形 2通りで解説!令和4年度 茨城県 数学 2022 入試問題100題解説81問目!
単元:
#数学(中学生)#中2数学#数Ⅰ#数A#図形の性質#図形と計量#三角形と四角形#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
点PはBCの中点
PF=?
*図は動画内参照
2022茨城県
この動画を見る
点PはBCの中点
PF=?
*図は動画内参照
2022茨城県
おうぎ形と正方形 令和4年度 茨城県 数学 2022 入試問題100題解説80問目!
三角比の拡張 #Shorts
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
三角比の拡張に関して解説していきます.
この動画を見る
三角比の拡張に関して解説していきます.
2022年東京大 (理系)最初の一問!!
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$f(x)=(cosx)log(cosx) -cosx + \int_0^x(cost)log(cost)dt$
f(x)は区間$0<x< \frac{π}{2}$において最小値を持つことを示し、その最小値を求めよ。
2022東京大学理系問題文改め
この動画を見る
$f(x)=(cosx)log(cosx) -cosx + \int_0^x(cost)log(cost)dt$
f(x)は区間$0<x< \frac{π}{2}$において最小値を持つことを示し、その最小値を求めよ。
2022東京大学理系問題文改め
三角比の相互関係 #Shorts
これ解ける?
単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\sqrt{ 2022 \sqrt{ 2021 \times 2019 + 1 + 1 } }$
値を求めよ
この動画を見る
$\sqrt{ 2022 \sqrt{ 2021 \times 2019 + 1 + 1 } }$
値を求めよ
【本当に苦手な人へ8分だけ時間をください!!】因数分解の基礎を現役塾講師が簡単に解説!〔現役塾講師解説、数学〕
大阪大の問題の背景 特に文系の人見てください
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#複素数平面#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)$ \cos\dfrac{2}{7}\pi, \cos\dfrac{4}{7}\pi, \cos\dfrac{6}{7}\pi$を解にもつ
$3$次方程式$ x^3+ax^2+bx+c=0$を求めよ.*$ z^7=1$
(2)$ f(x)=8x^3+4x^2-4x-1$,$f\left(\cos\dfrac{2}{7}\pi \right)=0$を示せ.
この動画を見る
(1)$ \cos\dfrac{2}{7}\pi, \cos\dfrac{4}{7}\pi, \cos\dfrac{6}{7}\pi$を解にもつ
$3$次方程式$ x^3+ax^2+bx+c=0$を求めよ.*$ z^7=1$
(2)$ f(x)=8x^3+4x^2-4x-1$,$f\left(\cos\dfrac{2}{7}\pi \right)=0$を示せ.
2つの円 埼玉県 令和4年度 数学 2022 入試問題100題解説77問目!
単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
円Oの半径が5㎝
点Rの半径が3㎝
線分PCの長さは?
*図は動画内参照
2022埼玉県
この動画を見る
円Oの半径が5㎝
点Rの半径が3㎝
線分PCの長さは?
*図は動画内参照
2022埼玉県
大阪大2022
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \alpha=\dfrac{2}{7}\pi$とする.
(1)$ \cos 4\alpha-\cos 3\alpha$を示せ.
(2)$ f(x)=8x^3+4x^2-4x-1,f(\cos \alpha)=0$を示せ.
(3)$ \cos\dfrac{2}{7}\pi$は無理数であることを示せ.
2022阪大過去問
この動画を見る
$ \alpha=\dfrac{2}{7}\pi$とする.
(1)$ \cos 4\alpha-\cos 3\alpha$を示せ.
(2)$ f(x)=8x^3+4x^2-4x-1,f(\cos \alpha)=0$を示せ.
(3)$ \cos\dfrac{2}{7}\pi$は無理数であることを示せ.
2022阪大過去問
無題
単元:
#数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ n^2-331n-2022$が$101$の倍数となる
$ 2$桁の自然数$ n$を$1$つ見つけよ.
この動画を見る
$ n^2-331n-2022$が$101$の倍数となる
$ 2$桁の自然数$ n$を$1$つ見つけよ.
令和四年都立国立高校一問目 平方根の計算 2022 入試問題100題解説76問目!
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\frac{\sqrt 5 + \sqrt 3}{\sqrt 2})^2
+(\frac{\sqrt 5 + \sqrt 3}{\sqrt 2})(\frac{\sqrt 5 - \sqrt 3}{\sqrt 2})
-(\frac{\sqrt 5 - \sqrt 3}{\sqrt 2})^2
$
2022都立国立高等学校
この動画を見る
$(\frac{\sqrt 5 + \sqrt 3}{\sqrt 2})^2
+(\frac{\sqrt 5 + \sqrt 3}{\sqrt 2})(\frac{\sqrt 5 - \sqrt 3}{\sqrt 2})
-(\frac{\sqrt 5 - \sqrt 3}{\sqrt 2})^2
$
2022都立国立高等学校
福田の入試問題解説〜東京大学2022年理系第3問〜点の存在する条件と領域の面積
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
Oを原点とする座標平面上で考える。座標平面上の2点$S(x_1,y_1),T(x_2,y_2)$
に対し、点Sが点Tから十分離れているとは、
$|x_1-x_2| \geqq 1$ または $|y_1-y_2| \geqq 1$
が成り立つことと定義する。
不等式
$0 \leqq x \leqq 3, 0 \leqq y \leqq 3$
が表す正方形の領域をDとし、その2つの頂点A(3,0), B(3,3)を考える。
さらに、次の条件$(\textrm{i}),(\textrm{ii})$を共に満たす点Pをとる。
$(\textrm{i})$点Pは領域Dの点であり、かつ、放物線$y=x^2$上にある。
$(\textrm{ii})$点Pは、3点O,A,Bのいずれからも十分離れている。
点Pのx座標をaとする。
(1)aのとりうる値の範囲を求めよ。
(2)次の条件$(\textrm{iii}),(\textrm{iv})$をともに満たす点Qが存在しうる範囲の面積f(a)を求めよ。
$(\textrm{iii})$点Qは領域Dの点である。
$(\textrm{iv})$点Qは、4点O,A,B,Pのいずれからも十分離れている。
(3)aは(1)で求めた範囲を動くとする。(2)のf(a)を最小にするaの値を求めよ。
2022東京大学理系過去問
この動画を見る
Oを原点とする座標平面上で考える。座標平面上の2点$S(x_1,y_1),T(x_2,y_2)$
に対し、点Sが点Tから十分離れているとは、
$|x_1-x_2| \geqq 1$ または $|y_1-y_2| \geqq 1$
が成り立つことと定義する。
不等式
$0 \leqq x \leqq 3, 0 \leqq y \leqq 3$
が表す正方形の領域をDとし、その2つの頂点A(3,0), B(3,3)を考える。
さらに、次の条件$(\textrm{i}),(\textrm{ii})$を共に満たす点Pをとる。
$(\textrm{i})$点Pは領域Dの点であり、かつ、放物線$y=x^2$上にある。
$(\textrm{ii})$点Pは、3点O,A,Bのいずれからも十分離れている。
点Pのx座標をaとする。
(1)aのとりうる値の範囲を求めよ。
(2)次の条件$(\textrm{iii}),(\textrm{iv})$をともに満たす点Qが存在しうる範囲の面積f(a)を求めよ。
$(\textrm{iii})$点Qは領域Dの点である。
$(\textrm{iv})$点Qは、4点O,A,B,Pのいずれからも十分離れている。
(3)aは(1)で求めた範囲を動くとする。(2)のf(a)を最小にするaの値を求めよ。
2022東京大学理系過去問
埼玉県 令和4年度 数学 関数 2022 入試問題100題解説74問目!
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
①:$y=ax^2$
②:$y=\frac{b}{x}$
l :$y=cx+d$
a,b,c,dの大小関係を小さい順に不等号で表せ
*図は動画内参照
2022埼玉県
この動画を見る
①:$y=ax^2$
②:$y=\frac{b}{x}$
l :$y=cx+d$
a,b,c,dの大小関係を小さい順に不等号で表せ
*図は動画内参照
2022埼玉県
軸が動く2次関数の場合分け 最大値 #Shorts
都立共通問題 2022 入試問題100題解説69問目!!
軸が動く2次関数の場合分け 最小値 #Shorts
xの2022乗の値
単元:
#数Ⅰ#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \left(x+\dfrac{1}{x}\right)^2=3$のとき,$ x^{2022}$の値を求めよ.
この動画を見る
$ \left(x+\dfrac{1}{x}\right)^2=3$のとき,$ x^{2022}$の値を求めよ.
小数第2022位の数は?!
単元:
#数Ⅰ#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ (6+\sqrt{37})^{2023}$の小数第$2022$位数は?
この動画を見る
$ (6+\sqrt{37})^{2023}$の小数第$2022$位数は?
【数学Ⅰ/三角比】円に内接する四角形②
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
円に内接する四角形$ABCD$がある。
$AB=\sqrt{ 7 },BC=2\sqrt{ 7 },CD=\sqrt{ 3 },DA=2\sqrt{ 3 }$のとき、次のものを求めよ。
(1)
$\cos\angle ABC$
(2)
対角線$AC$の長さ
(3)
四角形$ABCD$の面積$S$
この動画を見る
円に内接する四角形$ABCD$がある。
$AB=\sqrt{ 7 },BC=2\sqrt{ 7 },CD=\sqrt{ 3 },DA=2\sqrt{ 3 }$のとき、次のものを求めよ。
(1)
$\cos\angle ABC$
(2)
対角線$AC$の長さ
(3)
四角形$ABCD$の面積$S$
3乗根をはずせ
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
3乗根をはずせ.
$\sqrt[3]{8+\sqrt{189}}$
この動画を見る
3乗根をはずせ.
$\sqrt[3]{8+\sqrt{189}}$
3乗根をはずせ
単元:
#数Ⅰ#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3$乗根をはずせ.
$\sqrt[3]{8+\sqrt{189}}$
この動画を見る
$3$乗根をはずせ.
$\sqrt[3]{8+\sqrt{189}}$
【数学Ⅰ/三角比】円に内接する四角形①
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
円$O$に内接する四角形$ABCD$がある。
$AB=3,$ $BC=CD=\sqrt{ 3 },$ $\cos\angle ABC=\displaystyle \frac{\sqrt{ 3 }}{6}$のとき、次のものを求めよ。
(1)対角線$AC$の長さ
(2)辺$AD$の長さ
(3)円$O$の半径
この動画を見る
円$O$に内接する四角形$ABCD$がある。
$AB=3,$ $BC=CD=\sqrt{ 3 },$ $\cos\angle ABC=\displaystyle \frac{\sqrt{ 3 }}{6}$のとき、次のものを求めよ。
(1)対角線$AC$の長さ
(2)辺$AD$の長さ
(3)円$O$の半径
平方根&分数式の方程式
単元:
#数Ⅰ#数と式#2次関数#式の計算(整式・展開・因数分解)#2次関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$ \left(x-\dfrac{1}{x}\right)^{\frac{1}{2}}+\left(1-\dfrac{1}{x}\right)^{\frac{1}{2}}=x$
この動画を見る
これを解け.
$ \left(x-\dfrac{1}{x}\right)^{\frac{1}{2}}+\left(1-\dfrac{1}{x}\right)^{\frac{1}{2}}=x$
3次方程式の解の公式 順天堂大(医)
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#順天堂大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$ x^3+9x+6=0$
*誘導あり
解には$ \omega^3=1$の$\omega$を用いる$(\omega\neq 1)$
順天堂大(医)過去問
この動画を見る
これを解け.
$ x^3+9x+6=0$
*誘導あり
解には$ \omega^3=1$の$\omega$を用いる$(\omega\neq 1)$
順天堂大(医)過去問
簡単な根号のついた方程式
単元:
#数Ⅰ#数Ⅱ#数と式#2次関数#複素数と方程式#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$ \sqrt{3x^2-4x+11}-\sqrt{3x^2-4x-4}=3$
この動画を見る
これを解け.
$ \sqrt{3x^2-4x+11}-\sqrt{3x^2-4x-4}=3$
円の問題 良問です。 神奈川県 2022入試問題解説100問解説!!57問目
2022東海大(医)ドモアブルの定理の基本
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(\sqrt{2+\sqrt2}+\sqrt{2-\sqrt2i})^8$を解け.
2022東海大(医)過去問
この動画を見る
$(\sqrt{2+\sqrt2}+\sqrt{2-\sqrt2i})^8$を解け.
2022東海大(医)過去問