数Ⅰ - 質問解決D.B.(データベース) - Page 36

数Ⅰ

高校入試レベルだよ

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
高校入試レベルの図形の問題です.
この動画を見る 

sin sin sin sin sin sin sin sin sin sin sin sin

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$
\displaystyle \lim_{ θ \to 0 } \frac{sin(sin(sin θ))}{θ}
$
この動画を見る 

図形的イメージ

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
(sinx)' = cosx
この動画を見る 

平均値=中央値 昭和学院秀英 2022入試問題解説13問目

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#データの分析#データの分析#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x点 2点 4点 8点 3点 3点 7点 7点
この得点の平均値と中央値が一致したとき
x=?(*$x \geqq 0$)

2022昭和学院秀英高等学校
この動画を見る 

4次式の値を求めるだけの問題

アイキャッチ画像
単元: #2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=ax^4+bx^3+cx^2+dx$
$f(5)=f(-5)=f(-2)=1$
$f(10)=\Box$を求めよ.
この動画を見る 

2022乗 昭和学院秀英2022入試問題解説12問目

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(\sqrt 5 + 2)^{2022}(\sqrt 5 -2)^{2020}+(\sqrt 5 +2)^{2020}(\sqrt 5 -2)^{2022}$

2022昭和学院秀英高等学校
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。直線と円の表す領域とが共有点をもつ条件の問題。

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#軌跡と領域#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
[1]座標平面上に点A(-8,0)をとる。また、不等式\\
x^2+y^2-4x-10y+4 \leqq 0\\
の表す領域をDとする。\\
\\
\\
(1)領域Dは、中心が点(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })、半径が\boxed{\ \ ウ\ \ }の円の\\
\boxed{\ \ エ\ \ }である。\\
\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪ 周   ① 内部   ② 外部   \\
③ 周および内部   ④ 周および外部\\
\\  
\\
以下、点(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })をQとし、方程式\\
x^2+y^2-4x-10y+4=0\\
の表す図形をCとする。\\
\\
(2)点Aを通る直線と領域Dが共有点をもつのはどのようなときかを考えよう。\\
\\
(\textrm{i})(1)により、直線y=\boxed{\ \ オ\ \ }は点Aを通るCの接線の一つとなること\\
がわかる。\\
\\
太郎さんと花子さんは点Aを通るCのもう一つの接線について話している。\\
点Aを通り、傾きがkの直線をlとする。\\
\\
太郎:直線lの方程式はy=k(x+8)と表すことができるから、\\
これを\\
x^2+y^2-4x-10y+4=0\\
に代入することで接線を求められそうだね。\\
花子:x軸と直線AQのなす角のタンジェントに着目することでも\\
求められそうだよ。\\
\\
(\textrm{ii}) 太郎さんの求め方について考えてみよう。\\
y=k(x+8)をx^2+y^2-4x-10y+4=0に代入すると、\\
xについての2次方程式\\
(k^2+1)x^2+(16k^2-10k-4)x+64k^2-80k+4=0\\
が得られる。この方程式が\boxed{\ \ カ\ \ }ときのkの値が接線の傾きとなる。\\
\\
\boxed{\ \ カ\ \ }の解答群\\
⓪重解をもつ\\
①異なる2つの実数解をもち、1つは0である\\
②異なる2つの正の実数解をもつ\\
③正の実数解と負の実数解をもつ\\
④異なる2つの負の実数解をもつ\\
⑤異なる2つの虚数解をもつ\\
\\
(\textrm{iii})花子さんの求め方について考えてみよう。\\
x軸と直線AQのなす角を\theta(0 \lt \theta \leqq \frac{\pi}{2})とすると\\
\tan\theta=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\\
であり、直線y=\boxed{\ \ オ\ \ }と異なる接線の傾きは\tan\boxed{\ \ ケ\ \ }\\
と表すことができる。\\
\\
\boxed{\ \ ケ\ \ }の解答群\\
⓪\theta   ①2\theta   ②(\theta+\frac{\pi}{2})\\
③(\theta-\frac{\pi}{2})   ④(\theta+\pi)   ⑤(\theta-\pi)\\
⑥(2\theta+\frac{\pi}{2})   ⑦(2\theta-\frac{\pi}{2})\\
\\
\\
(\textrm{iv})点Aを通るCの接線のうち、直線y=\boxed{\ \ オ\ \ }と異なる接線の傾き\\
をk_0とする。このとき、(\textrm{ii})または(\textrm{iii})の考え方を用いることにより\\
k_0=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\\
であることがわかる。\\
直線lと領域Dが共有点をもつようなkの値の範囲は\boxed{\ \ シ\ \ }である。\\
\\
\boxed{\ \ シ\ \ }の解答群\\
⓪k \gt k_0 ①k \geqq k_0\\
②k \lt k_0 ③k \leqq k_0\\
④0 \lt k \lt k_0 ⑤0 \leqq k \leqq k_0\\
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

因数分解 中学生の解き方 高校生の解き方 昭和学院秀英 2022入試問題解説11問目

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$ax^2-(a^2+a-2)x-2(a+1)$を因数分解せよ

2022昭和学院秀英高等学校
この動画を見る 

動画内に誘導あり!でもむずい! 市川 2022入試問題解説10問目

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
(1)$\{ (a-b)^2+b^2 \} \{ (a+b)^2+b^2 \} $=?
(2)$\frac{1}{6} \times \frac{(4^4+4・3^4)(4^4+4・11^4)(4^4+4・19^4)
(4^4+4・27^4)(4^4+4・35^4)}
{(4^4+4・7^4)(4^4+4・15^4)(4^4+4・23^4)(4^4+4・31^4)(4^4+4・39^4)}$

2022市川
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題2[2]。データの分析の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
[2] 日本国外における日本語教育の状況を調べるために、独立行政法人国際交流基金では\\
「海外日本教育機関調査」を実施しており、各国における教育機関数,教員数,学習数\\
が調べられている。2018年度において学習者数が5000人以上の国と地域(以下、国)\\
は29ヵ国であった。これら29ヵ国について、2009年度と2018年度のデータが得られている。\\
\\
\\
(1) 各国において、学習者数を教員数で割ることにより、国ごとの\\
「教員1人当たりの学習者数」を算出することができる。図1と図2(※動画参照)は、\\
2009年度および2018年度における「教員1人当たりの学習者数」のヒストグラム\\
である。これら二つのヒストグラムから、9年間の変化に関して、後のことが読み取れる。\\
なお、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を含まない。\\
\\
\\
・2009年度と2018年度の中央値が含まれる階級の階級値を比較すると、\boxed{\ \ ケ\ \ }\\
・2009年度と2018年度の第1四分位数が含まれる階級の階級値を比較すると、\boxed{\ \ コ\ \ }\\
・2009年度と2018年度の第3四分位数が含まれる階級の階級値を比較すると、\boxed{\ \ サ\ \ }\\
・2009年度と2018年度の範囲を比較すると、\boxed{\ \ シ\ \ }。\\
・2009年度と2018年度の四分位範囲を比較すると、\boxed{\ \ ス\ \ }。\\
\\
\boxed{\ \ ケ\ \ }~\boxed{\ \ ス\ \ }を次の⓪~③のうちから一つ選べ。\\
⓪ 2018年度の方が小さい\\
① 2018年度の方が大きい\\
② 両者は等しい\\
③ これら二つのヒストグラムからだけでは両者の大小を判断できない\\
\\
\\
(2)各国において、学習者数を教育機関数で割ることにより、「教育機関1機関あたりの\\
学習者数」も算出した。図3(※動画参照)は、2009年度における\\
「教育機関1機関あたりの学習者数」の箱ひげ図である。\\
\\
2009年度について、「教育機関1機関あたりの学習者数」(横軸)と\\
「教員1人当たりの学習者数」(縦軸)の散布図は\boxed{\ \ セ\ \ }である。ここで、\\
2009年度における「教員1人当たりの学習者数」のヒストグラムである(1)の図1\\
を、図4(※動画参照)として再掲しておく。\\
\\
\boxed{\ \ セ\ \ }については、最も適当なものを、次の⓪~③のうちから一つ選べ。\\
なお、これらの散布図には、完全に重なっている点はない。\\
(※選択肢は動画参照)\\
\\
(3) 各国における2018年度の学習者数を100としたときの2009年度の学習者数S,\\
および、各国における2018年度の教員数を100としたときの2009年度の\\
教員数Tを算出した。\\
例えば、学習者数について説明すると、ある国において、2009年度が44272人,\\
2018年度が174521人であった場合、2009年度の学習者数Sは\\
\frac{44272}{174521}×100 より25.4と算出される。\\
表1(※動画参照)はSとTについて、平均値、標準偏差および共分散を計算したものである。\\
ただし、SとTの共分散は、Sの偏差とTの偏差の積の平均値である。\\
表1の数値が四捨五入していない正確な値であるとして、SとTの相関係数\\
を求めると\boxed{\ \ ソ\ \ }, \boxed{\ \ タチ\ \ } である。\\
\\
(4) 表1と(3)で求めた相関係数を参考にすると、(3)で算出した2009年度の\\
S(横軸)とT(縦軸)の散布図は\boxed{\ \ ツ\ \ }である。\\
\\
\boxed{\ \ ツ\ \ }については、最も適当なものを、次の⓪~③のうちから一つ\\
選べ。なお、これらの散布図には、完全に重なっている点はない。\\
(※選択肢は動画参照)
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[2]。三角比を用いた測量の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第1問\ [2] 太郎さんは花子さんは、キャンプ場のガイドブックにある地図を見ながら、\\
後のように話している。\\
\\
太郎:キャンプ場の地点Aから山頂Bを見上げる角度はどれくらいかな。\\
花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べたら、\\
図1(※動画参照)のようになったよ。点Cは、山頂Bから地点Aを通る水平面に下ろした\\
垂線とその水平面との交点のことだよ。\\
太郎:図1の角度\thetaは、AC,BCの長さを定規で測って、\\
三角比の表を用いて調べたら16°だったよ。\\
花子:本当に16°なの?図1の鉛直方向の縮尺と水平方向の縮尺は等しい\\
のかな?\\
\\
図1の\thetaはちょうど16°であったとする。しかし、図1の縮尺は、水平方向が\frac{1}{100000}\\
であるのに対して鉛直方向は\frac{1}{25000}であった。\\
実際にキャンプ場の地点Aから山頂Bを見上げる角である\angle BACを考えると、\\
\tan\angle BACは\boxed{\ \ コ\ \ }.\boxed{\ \ サシス\ \ }である。\\
\\
したがって、\angle BACの大きさは\boxed{\ \ セ\ \ }、ただし、目の高さは無視して考えるものとする。\\
\\
\boxed{\ \ セ\ \ }の解答群\\
⓪3°より大きく4°より小さい ①ちょうど4°である ②4°より大きく5°より小さい\\
③ちょうど16°である ④48°より大きく49°より小さい ⑤ちょうど49°である\\
⑥49°より大きく50°より小さい ⑦63°より大きく64°より小さい ⑧ちょうど64°である\\
⑨64°より大きく65°より小さい
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題2[1]。2次方程式、2次関数、必要十分条件の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第2問\ [1] p,qを実数とする。\\
花子さんと太郎さんは、次の二つの2次方程式について考えている。\\
x^2+px+q=0 \ldots①\\
x^2+qx+p=0 \ldots②\\
①または②を満たす実数xの個数をnとおく。\\
\\
(1)p=4,q=-4のとき、n=\boxed{\ \ ア\ \ }である。\\
また、p=1,q=-2のとき、n=\boxed{\ \ イ\ \ }である。\\
(2)p=-6のとき、n=3になる場合を考える。\\
\\
花子:例えば、①と②を共に満たす実数xがあるときはn=3に\\
なりそうだね。\\
太郎:それを\alphaとしたら、\alpha^2-6\alpha+q=0と\alpha^2+q\alpha-6=0が\\
成り立つよ。\\
花子:なるほど。それならば、\alpha^2を消去すれば、\alphaの値が求められそうだね。\\
太郎:確かに\alphaの値が求まるけど、実際にn=3となっているか\\
どうかの確認が必要だね。\\
花子:これ以外にもn=3となる場合がありそうだね。\\
\\
n=3となるqの値は\\
q=\boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ }\\
である。ただし、\boxed{\ \ ウ\ \ } \lt \boxed{\ \ エ\ \ }とする。\\
\\
p=-6に固定したまま、qの値だけを変化させる。\\
y=x^2-6x+q \ldots③\\
y=x^2+qx-6 \ldots④\\
\\
(1)この二つのグラフについて、q=1のときのグラフを点線で、\\
qの値を1から増加させたときのグラフを実線でそれぞれ表す。\\
このとき、③のグラフの移動の様子を示すと\boxed{\ \ オ\ \ }となり、\\
④のグラフの移動の様子を示すと\boxed{\ \ カ\ \ }となる。\\
\\
\boxed{\ \ オ\ \ }, \boxed{\ \ カ\ \ }については、最も適当なものを、次の⓪~⑦\\
のうちから一つずつ選べ。ただし、同じものを繰り返し選んでもよい。\\
なお、x軸とy軸は省略しているが、x軸は右方向、\\
y軸は上方向がそれぞれ正の方向である。\\
(※選択肢は動画参照)\\
\\
(4)\boxed{\ \ ウ\ \ } \lt q \lt \boxed{\ \ エ\ \ }とする。全体集合Uを実数全体の集合とし、\\
Uの部分集合A,Bを\\
\\
A=\left\{x\ |\ x^2-6x+q \lt 0 \right\}\\
B=\left\{x\ |\ x^2+qx-6 \lt 0 \right\}\\
\\
とする。Uの部分集合Xに対し、Xの補集合を\bar{ X }と表す。このとき、\\
次のことが成り立つ。\\
\\
・x \in Aは、x \in Bであるための\boxed{\ \ キ\ \ }。\\
・x \in Bは、x \in \bar{ A }であるための\boxed{\ \ ク\ \ }。\\
\\
\\
\boxed{\ \ キ\ \ }, \boxed{\ \ ク\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪必要条件であるが、十分条件ではない\\
①十分条件であるが、必要条件ではない\\
②必要十分条件である\\
③必要条件でも十分条件でもない
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

ただの方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{(x^2+1)^2}{x(x+1)^2}=\dfrac{9}{2}$
これを解け.
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[3]。三角比と図形の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第1問\ [3] 外接円の半径が3である\triangle ABCを考える。点Aから直線BCへ引いた垂線と直線BC\\
との交点をDとする。\\
\\
(1)AB=5, AC=4とする。このとき\sin\angle ABC=\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}, AD=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テ\ \ }} である。\\
\\
(2) 2辺AB,ACの長さの間に2AB+AC=14 の関係があるとする。\\
このとき、ABの長さの取り得る値の範囲は\boxed{\ \ ト\ \ } \leqq AB \leqq \boxed{\ \ ナ\ \ } であり、\\
AD=\frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}AB^2+\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}AB と表せるので、ADの長さの最大値は\boxed{\ \ ヒ\ \ }である。
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[1]。式の値の計算問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第1問\ [1] 実数a,b,cがa+b+c=1\ldots①およびa^2+b^2+c^2=13\ldots②を満たしているとする。\\
(1)(a+b+c)^2を展開した式において、①と②を用いるとab+bc+ca=\boxed{\ \ アイ\ \ }\\
であることが分かる。\\
よって、(a-b)^2+(b-c)^2+(c-a)^2=\boxed{\ \ ウエ\ \ }である。\\
\\
(2)a-b=2\sqrt5 の場合に、(a-b)(b-c)(c-a)の値を求めてみよう。\\
b-c=x, c-a=yとおくと、x+y=\boxed{\ \ オカ\ \ }\sqrt5 である。また(1)の計算から\\
x^2+y^2=\boxed{\ \ キク\ \ }が成り立つ。これらより\\
(a-b)(b-c)(c-a)=\boxed{\ \ ケ\ \ }\sqrt5 である。
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

気づけば一瞬!! 平均値 早稲田佐賀 2022入試問題解説4問目

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#データの分析#データの分析#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
箱の中に1⃣、2⃣、3⃣、4⃣、5⃣のカードがある。
中から3枚を取り出し、出た順に一の位、十の位、百の位として3ケタの整数を作った。
作られる3ケタの整数全ての平均値を求めよ。
2022早稲田佐賀高等学校
この動画を見る 

条件不足の連立三元二次方程式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x,y,z)$の実数解を求めよ.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x + y + z-18 \\
x^2+y^2+z^2=108
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

整数問題

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$(a,b)$を求めよ.
$a^2+b^2=(ab-7)^2$
この動画を見る 

中3の問題

アイキャッチ画像
単元: #数学(中学生)#中3数学#数Ⅰ#相似な図形
指導講師: 鈴木貫太郎
問題文全文(内容文):
図形内の?を求めよ.
この動画を見る 

【数Ⅰ】データの分析:標準得点について

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅰ データの分析】
標準得点(Z得点)と呼ばれる調整された得点の計算方法と、その特徴について説明をします。
共通テストの模試や私大の入試にも良く出題されるテーマですので、この機会にぜひマスターしておきましょう!
この動画を見る 

無理数の2022乗の1の位の数

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(2+\sqrt5)^{2022}$の1の位の数を求めよ.
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[2]。データの分析の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} [2]就業者の従事する産業は第1次産業、第2次産業、第3次産業の三つに分類される。\\
都道府県別に、就業者数に対する各産業に就業する人数の割合を、\\
各産業の「就業者数割合」と呼ぶことにする。\\
\\
(1)図1(※動画参照)は、1975年から2010年まで5年ごとの8個の年度(それ\\
ぞれを時点という)における都道府県別の三つの産業の就業者\\
数割合を箱ひげ図で表したものである。各時点の箱ひげ図は、\\
それぞれ上から第1次産業、第2次産業、第3次産業である。 \\
次の①~⑤のうち、図1から読み取れることとして正しくない\\
ものは\boxed{\ \ タ\ \ }と\boxed{\ \ チ\ \ }である。\\
\\
タ、チの解答群\\
\\
⓪ 第1次産業の就業者数割合の四分位範囲は、2000年までは\\
後の時点になるにしたがって減少している。\\
① 第1次産業の就業者数割合について、左側のひげの長さと右側\\
のひげの長さを比較すると、どの時点においても左側の方が長い。\\
② 第2次産業の就業者数割合の中央値は、1990年以降、後の時点\\
になるにしたがって減少している。\\
③ 第2次産業の就業者数割合の第1四分位数は、後の時点にした\\
がって減少している。\\
④ 第3次産業の就業者数割合の第3四分位数は、後の時点にした\\
がって増加している。\\
⑤ 第3次産業の就業者数割合の最小値は、後の時点にしたがって増加している。\\
\\
\\
(2)(1)で取り上げた8時点の中から5時点を取り出して考える。\\
各時点における都道府県別の、第1次産業と第3次産業の就業\\
者数割合のヒストグラムを一つのグラフにまとめてかいたもの\\
が、右の5つのグラフである。それぞれの右側の網掛けした\\
ヒストグラムが第3次産業のものである。なお、ヒストグラム\\
の各階級の区間は、左側の数値を含み、右側の数値を含まない。\\
・1985年度におけるグラフは\boxed{\ \ ツ\ \ } である。\\
・1995年度におけるグラフは\boxed{\ \ テ\ \ } である。\\
\\
(※\boxed{\ \ ツ\ \ }, \boxed{\ \ テ\ \ }の選択肢は動画参照)\\
\\
(3) 三つの産業から二つずつを組み合わせて都道府県別の就業者数割合\\
の散布図を作成した。右の図2の散布\\
図群は、左から順に1975年度における第1次産業(横軸)と\\
第2次産業(縦軸)の散布図、第2次産業(横軸) \\
と第3次産業(縦軸)の散布図、第3次産業(横軸)と第1次産業(縦軸)の散布図である。\\
また、図3(※動画参照)は同様に作成した2015年度の散布図群である。\\
下の (\textrm{I})(\textrm{II})(\textrm{III}) は1975年度を基準にしたときの、\\
2015年度の変化を記述したものである。ただし、ここで\\
「相関が強くなった」とは、相関係数の絶対値が大きくなったことを意味する。\\
\\
(\textrm{I}) 都道府県別の第1次産業の就業者数割合と第2次産業\\
の就業者数割合の間の相関は強くなった。\\
(\textrm{II}) 都道府県別の第2次産業の就業者数割合と第3次産業\\
の就業者数割合の間の相関は強くなった。 \\
(\textrm{III}) 都道府県別の第3次産業の就業者数割合と第1次産業\\
の就業者数割合の間の相関は強くなった。\\
正誤の組み合わせとして正しいのは\boxed{\ \ ト\ \ }である。\\
(※\boxed{\ \ ト\ \ }の選択肢は動画参照)\\
\\
(4) 各都道府県の就業者数割合の内訳として男女別の\\
就業者数も発表されている。そこで、就業者数に対する\\
男性・女性の就業者数の割合をそれぞれ「男性の就業者数割合」、\\
「女性の就業者数割合」と呼ぶことにし、\\
これらを都道府県別に算出した、下の図4(※動画参照)は、2015年度における\\
都道府県別の、第1次産業の就業者数割合(横軸)、\\
男性の就業者数割合(縦軸)の散布図である。\\
各都道府県の、男性の就業者数と女性の就業者数を\\
合計すると就業者数の全体になることに注意すると、\\
2015年度における都道府県別の、第1次産業の就業者数割合(横軸)と、\\
女性の就業者数割合(縦軸)の 散布図は\boxed{\ \ ナ\ \ }である。\\
ナについては①~③のうちから 最も適当なものを一つ選べ。
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

基本問題

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{2022+a^2+2a}$が整数となる自然数$a$を求めよ.
この動画を見る 

π=3はやばい?

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
円周率を3で計算してはいけない理由
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(1)。2次関数の問題。

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)座標平面上で、次の二つの2次関数のグラフについて考える。\\
\\
y=3x^2+2x+3 \ldots① y=2x^2+2x+3 \ldots②\\
\\
①、②の2次関数のグラフには次の共通点がある。\\
\\
共通点:・y軸との交点のy座標は\boxed{\ \ ア\ \ } である。\\
・y軸との交点における接線の方程式はy=\boxed{\ \ イ\ \ }\ x+\boxed{\ \ ウ\ \ } である。\\
\\
次の⓪~⑤の2次関数のグラフのうち、y軸との交点における接線が\\
y=\boxed{\ \ イ\ \ }\ x+\boxed{\ \ ウ\ \ }となるものは\\
\boxed{\ \ エ\ \ }である。\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪y=3x^2-2x-3 ①y=-3x^2+2x-3 ②y=2x^2+2x-3\\
③y=2x^2-2x+3 ④y=-x^2+2x+3 ⑤y=-x^2-2x+3\\
\\
a,b,cを0でない実数とする。\\
曲線y=ax^2+bx+c上の点(0,\boxed{\ \ オ\ \ })における接線をlとすると、\\
その方程式はy=\boxed{\ \ カ\ \ }\ x+\boxed{\ \ キ\ \ } である。\\
\\
直線lとx軸との交点のx座標は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}である。\\
\\
a,b,cが正の実数であるとき、曲線y=ax^2+bx+cと\\
直線lおよび直線x=\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}で囲まれた図形の\\
面積をSとするとS=\frac{ac^{\boxed{サ}}}{\boxed{\ \ シ\ \ }b^{\boxed{ス}}} \ldots③ である。\\
\\
③において、a=1とし、Sの値が一定となるように正の実数b,cの値を変化させる。\\
このとき、bとcの関係を表すグラフの概形は\boxed{\ \ セ\ \ }である。\\
(※\boxed{\ \ セ\ \ }の選択肢は動画参照)
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

超有名問題

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
図形内のxの角度を求めよ.
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[1]。2次関数の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} [1] 陸上競技の短距離100m走では、100mを走るのに\hspace{160pt}\\
かかる時間(以下、タイムと呼ぶ)は、1歩あたりの\\
進む距離(以下、ストライドと呼ぶ)と1秒当たりの歩数(以下、ピッチと呼ぶ)に関係がある。\\
ストライドとピッチはそれぞれ以下の式で与えられる。\\
ストライド (m/歩) =\frac{100(m)}{100mを走るのにかかった歩数(歩)},\\
\\
 ピッチ (歩/秒) =\frac{100m を走るのにかかった歩数(歩)}{タイム(秒)}\\
\\
ただし、100mを走るのにかかった歩数は、最後の1歩が\\
ゴールラインをまたぐこともあるので、\\
少数で 表される。以下、単位は必要のない限り省略する。\\
例えば、タイムが10.81で、そのときの歩数が48.5であったとき、\\
ストライドは\frac{100}{48.5}より約2.06、ピッチ は \\
\frac{ 48.5 }{10.81} より約4.49である。\\
\\
(1)ストライドをx、ピッチをzとおく。ピッチは1秒当たりの歩数、\\
ストライドは1歩あたりの進む距離\\
なので、1秒あたりの進む距離すなわち平均速度は、\\
xとzを用いて\boxed{\ \ ア\ \ }(m/秒) と表される。\\
これよりタイムと、ストライド、ピッチとの関係はタイム=\frac{100}{\boxed{\ \ ア\ \ }} と\\
表されるので\boxed{\ \ ア\ \ } が最大となるとき\\
にタイムが最もよくなる。ただし、タイムがよくなるとは、\\
タイムの値が小さくなることである。\\
\\
\\
\boxed{\ \ ア\ \ }の解答群\\
⓪ x+z ①z-x ②xz ③\frac{x+z}{2} ④\frac{z-x}{2} ⑤\frac{xz}{2}\\
\\
(2)太郎さんは、①に着目して、タイムが最もよくなるスライドと\\
ピッチを考えることにした。右に表は、太郎さんが練習で\\
100mを3回走った時のストライドとピッチのデータである。\\
また、ストライドとピッチにはそれぞれ限界がある。太郎さんの場合、\\
ストライドの最大値は2.40、ピッチの最大値は4.80である。\\
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという\\
関係があると考えてピッチがストライドの1次関数として\\
表されると仮定した。このとき、ピッチzはストライドxを用いて\\
z=\boxed{\ \ イウ\ \ }\ x+\frac{\boxed{\ \ エオ\ \ }}{5} \ldots② と表される。\\
②が太郎さんのストライドの最大値2.40とピッチの最大値4.80\\
まで成り立つと仮定すると、xの値の範囲は\\
\boxed{\ \ カ\ \ }.\boxed{\ \ キク\ \ } \leqq x \leqq 2.40\\
\\
(3)y=\boxed{\ \ ア\ \ }とおく。②をy=\boxed{\ \ ア\ \ }に代入することにより、\\
yをxの関数としてあらわすことができる。太郎さんのタイムが最もよくなるストライド\\
とピッチを求めるためには、\boxed{\ \ カ\ \ }.\boxed{\ \ キク\ \ } \leqq x \leqq 2.40の範囲で\\
yの値を最大にするxの値を見つければよい。このときyの値が最大になるのは\\
x=\boxed{\ \ ケ\ \ }.\boxed{\ \ コサ\ \ }のときである。よって、太郎さんのタイムが最もよくなるのは、\\
ストライドが\boxed{\ \ ケ\ \ }.\boxed{\ \ コサ\ \ }のときであり、このとき、ピッチは\boxed{\ \ シ\ \ }.\boxed{\ \ スセ\ \ }\\
である。また、このときの太郎さんのタイムは①により\boxed{\ \ ソ\ \ }である。\\
\\
\boxed{\ \ ソ\ \ }の解答群\\
⓪9.68  ①9.97  ②10.09  ③10.33  ④10.42  ⑤10.55
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

全米をsin撼させた問題です。

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{sinx}{n} = ?$
(a) 0
(b) 1
(c) 3
(d) 6
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[2]。三角比に関する問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [2]右の図のように、\triangle ABCの外側に辺AB,BC,CAをそれぞれ1辺とする\\
正方形ADEB,BFGC,CHIAをかき、2点EとF、GとH、IとDをそれぞれ\\
線分で結んだ図形を考える。以下において\\
BC=a, CA=b, AB=c\\
\angle CAB=A, \angle ABC=B, \angle BCA=C とする。\\
\\
(1)b=6, c=5, \cos A=\frac{3}{5}のとき、\sin A=\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}であり、\\
\triangle ABCの面積は\boxed{\ \ タチ\ \ }、\triangle AIDの面積は\boxed{\ \ ツテ\ \ }である。\\
\\
(2)正方形BFGC,CHIA,ADEBの面積をそれぞれS_1,S_2,S_3とする。\\
このとき、S_1-S_2-S_3 は\\
・0° \lt A \lt 90°のとき\boxed{\ \ ト\ \ } ・A=90°のとき\boxed{\ \ ナ\ \ }\\
・90° \lt A \lt 180°のとき\boxed{\ \ ニ\ \ }\\
\\
\boxed{\ \ ト\ \ }~\boxed{\ \ ニ\ \ }の解答群\\
⓪0である  ①正の値である  ②負の値である  ③正の値も負の値もとる\\
\\
(3)\triangle AID,\triangle BEF,\triangle CGHの面積をそれぞれT_1,T_2,T_3とする。\\
このとき、\boxed{\ \ ヌ\ \ }である。\\
\\
\boxed{\ \ ヌ\ \ }の解答群\\
⓪a \lt b \lt cならばT_1 \gt T_2 \gt T_3\\
①a \lt b \lt cならばT_1 \lt T_2 \lt T_3\\
②Aが鈍角ならばT_1 \lt T_2 かつT_1 \lt T_3\\
③a,b,cの値に関係なく、T_1 = T_2 = T_3\\
\\
(4)\triangle ABC,\triangle AID,\triangle BEF,\triangle CGHのうち、外接円の半径が最も小さいもの\\
を求める。0° \lt A \lt 90°のとき、ID \boxed{\ \ ネ\ \ } BCであり、\\
(\triangle AIDの外接円の半径)\boxed{\ \ ノ\ \ }(\triangle ABCの外接円の半径)\\
であるから、外接円の半径が最も小さい三角形は\\
0° \lt A \lt B \lt C \lt 90°のとき、\boxed{\ \ ハ\ \ }である。\\
0° \lt A \lt B \lt 90° \lt Cのとき、\boxed{\ \ ヒ\ \ }である。\\
\\
\boxed{\ \ ネ\ \ }、\boxed{\ \ ノ\ \ }の解答群\\
⓪\lt   ①=   ②\gt\\
\\
\boxed{\ \ ハ\ \ }、\boxed{\ \ ヒ\ \ }の解答群\\
⓪\triangle ABC   ①\triangle AID   ②\triangle BEF   ③\triangle CGH\\
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

二重根号の方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解$\sqrt{2-\sqrt{x+2}}=x$を求めよ.
この動画を見る 
PAGE TOP