数Ⅰ
半円と円
等式を変形せよ。
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a+b=0$
$a^2+b^2 = ▢ab$
この動画を見る
$a+b=0$
$a^2+b^2 = ▢ab$
中3生も解けるし どっちが大きい?
虚数係数の二次方程式(類)横浜市立(医)
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$iz^2-4iz+3i+\sqrt3=0$
横浜市立(医)過去問
この動画を見る
これを解け.
$iz^2-4iz+3i+\sqrt3=0$
横浜市立(医)過去問
ただの三乗根の計算
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a=\sqrt[3]{81}+2\sqrt[3]{9}+4$
$\dfrac{12}{a}+\dfrac{6}{a^2}+\dfrac{1}{a^3}$の値を求めよ.
この動画を見る
$a=\sqrt[3]{81}+2\sqrt[3]{9}+4$
$\dfrac{12}{a}+\dfrac{6}{a^2}+\dfrac{1}{a^3}$の値を求めよ.
三角形の面積の最大値 早稲田実業
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△ABCの面積の最大値=?
*図は動画内参照
早稲田実業学校
この動画を見る
△ABCの面積の最大値=?
*図は動画内参照
早稲田実業学校
指数不等式
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$(\sqrt2-1)^{\frac{x}{x-4}}\gt (3-\sqrt8)^{\frac{1}{2x(x-4)}}$
この動画を見る
これを解け.
$(\sqrt2-1)^{\frac{x}{x-4}}\gt (3-\sqrt8)^{\frac{1}{2x(x-4)}}$
円と二等辺三角形 土佐高校
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
BC=?
*図は動画内参照
土佐高等学校(改)
この動画を見る
BC=?
*図は動画内参照
土佐高等学校(改)
合同式 二項展開 因数分解の基本
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$11^{45}+13^{45}$を$144$で割った余りを求めよ.
この動画を見る
$11^{45}+13^{45}$を$144$で割った余りを求めよ.
どっちがでかい?
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt2 $ vs $\sqrt[3]{3}$
どちらが大きいか?
この動画を見る
$\sqrt2 $ vs $\sqrt[3]{3}$
どちらが大きいか?
3つの半円の面積の和 東北学院
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
3つの半円の面積の和=?
*図は動画内参照
東北学院高等学校
この動画を見る
3つの半円の面積の和=?
*図は動画内参照
東北学院高等学校
3乗根
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
${}^3\sqrt {\sqrt{64}}=$
この動画を見る
${}^3\sqrt {\sqrt{64}}=$
ただの分母の有理化
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
分母を有理化せよ.
$\dfrac{1}{\sqrt[3]{9}+\sqrt[3]{3}+2}$
この動画を見る
分母を有理化せよ.
$\dfrac{1}{\sqrt[3]{9}+\sqrt[3]{3}+2}$
【数Ⅰ】命題ってなに?【必要条件・十分条件の見分け方】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
命題(必要条件・十分条件の見分け方)に関して解説していきます.
この動画を見る
命題(必要条件・十分条件の見分け方)に関して解説していきます.
二次方程式の虚数解の3乗が実数
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+2Px=12P=0$は虚数解$\alpha$をもつ$\alpha^3$が実数となる実数$P$を求めよ.
この動画を見る
$x^2+2Px=12P=0$は虚数解$\alpha$をもつ$\alpha^3$が実数となる実数$P$を求めよ.
ガウス記号の入った二次方程式
【数Ⅰ】三角比総まとめ【三角比の基本をざっくりと振り返ろう】
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
三角比の基本に関して解説していきます.
この動画を見る
三角比の基本に関して解説していきます.
気がつけば一瞬でとろける。
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle A=?$
*図は動画内参照
城西大学付属川越高等学校
この動画を見る
$\angle A=?$
*図は動画内参照
城西大学付属川越高等学校
息抜き素因数分解
【数Ⅰ】円に内接する四角形【余弦定理を使い倒せ!】
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
$ 四角形ABCDは円に内接しており,AB=2,BC=4,CD=3,DA=3である.
(1)cosA,BDの長さを求めよ.
(2)四角形ABCDの面積を求めよ.$
この動画を見る
$ 四角形ABCDは円に内接しており,AB=2,BC=4,CD=3,DA=3である.
(1)cosA,BDの長さを求めよ.
(2)四角形ABCDの面積を求めよ.$
【数Ⅰ】面積公式・ヘロンの公式・内接円の半径【小学生からの脱却!】
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
面積公式・ヘロンの公式・内接円の半径に関して解説していきます.
この動画を見る
面積公式・ヘロンの公式・内接円の半径に関して解説していきます.
三角比この覚え方はどうでしょうか?
解が整数じゃなくても解けるよ
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^3+y^3-91 \\
xy=12
\end{array}
\right.
\end{eqnarray}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^3+y^3=20 \\
xy=-2
\end{array}
\right.
\end{eqnarray}$
この動画を見る
実数解を求めよ.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^3+y^3-91 \\
xy=12
\end{array}
\right.
\end{eqnarray}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^3+y^3=20 \\
xy=-2
\end{array}
\right.
\end{eqnarray}$
【高校数学】有名角の面白い覚え方~数学の先生は怒らないでね~【数学Ⅰ】
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
有名角の面白い覚え方紹介動画です
この動画を見る
有名角の面白い覚え方紹介動画です
ざ・因数分解
【数Ⅰ】2次関数:平行移動
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
2次関数 $y = ax^2 + bx + c$ のグラフを、x軸 方向に3、y軸方向に-2だけ平行移動した 放物線は、点(5,13)を通り、頂点の座標が (2,-5)である。 このとき、定数a、b、cの値を求めよ。
この動画を見る
2次関数 $y = ax^2 + bx + c$ のグラフを、x軸 方向に3、y軸方向に-2だけ平行移動した 放物線は、点(5,13)を通り、頂点の座標が (2,-5)である。 このとき、定数a、b、cの値を求めよ。
円の折り返し
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
斜線部の面積=?
*図は動画内参照
関西大倉高等学校
この動画を見る
斜線部の面積=?
*図は動画内参照
関西大倉高等学校
福田の数学〜立教大学2021年経済学部第1問(6)〜平均と分散の関係
単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (6)\ 10個の正三角形がある。それらの辺の長さからなるデータの平均は9である。\\
また、それらの面積からなるデータの平均値は\frac{118\sqrt3}{5}である。このとき、\\
辺の長さからなるデータの分散は\ \boxed{\ \ ク\ \ }\ である。
\end{eqnarray}
2021立教大学経済学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (6)\ 10個の正三角形がある。それらの辺の長さからなるデータの平均は9である。\\
また、それらの面積からなるデータの平均値は\frac{118\sqrt3}{5}である。このとき、\\
辺の長さからなるデータの分散は\ \boxed{\ \ ク\ \ }\ である。
\end{eqnarray}
2021立教大学経済学部過去問