数A
2つの長方形と面積
福田の数学〜立教大学2022年経済学部第3問〜放物線と円と直線で囲まれた面積
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
Oを原点とする座標平面上の放物線$C:y=x^2$とC上の点P$(\frac{\sqrt3}{2}, \ \frac{3}{4})$がある。
PにおけるCの接線をlとし、また、Pを通りlと直交する直線をmとする。
さらに、mとx軸の交点をQとする。このとき、次の問いに答えよ。
(1)mの方程式を$y=px+q$とするとき、定数p,qの値を求めよ。
(2)Qの座標を$(a,\ 0)$とするとき、aの値を求めよ。
(3)Qを中心とする半径rの円Dがlとただ1つの共有点を持つとき、rの値を求めよ。
(4)(1)で定めたp,qの値に対して、次の連立不等式の表す領域の面積S_1を求めよ。
$x \geqq 0,\ \ \ y \geqq 0,\ \ \ y \leqq px+q,\ \ \ y \leqq x^2$
(5)(2)で定めたaの値と(3)で定めたrの値に対して、次の連立不等式の表す領域
の面積S_2を求めよ。
$0 \leqq x \leqq \frac{\sqrt3}{2},\ \ \ y \geqq 0,\ \ \ y \leqq x^2,\ \ \ (x-a)^2+y^2 \geqq r^2$
2022立教学部経済学部過去問
この動画を見る
Oを原点とする座標平面上の放物線$C:y=x^2$とC上の点P$(\frac{\sqrt3}{2}, \ \frac{3}{4})$がある。
PにおけるCの接線をlとし、また、Pを通りlと直交する直線をmとする。
さらに、mとx軸の交点をQとする。このとき、次の問いに答えよ。
(1)mの方程式を$y=px+q$とするとき、定数p,qの値を求めよ。
(2)Qの座標を$(a,\ 0)$とするとき、aの値を求めよ。
(3)Qを中心とする半径rの円Dがlとただ1つの共有点を持つとき、rの値を求めよ。
(4)(1)で定めたp,qの値に対して、次の連立不等式の表す領域の面積S_1を求めよ。
$x \geqq 0,\ \ \ y \geqq 0,\ \ \ y \leqq px+q,\ \ \ y \leqq x^2$
(5)(2)で定めたaの値と(3)で定めたrの値に対して、次の連立不等式の表す領域
の面積S_2を求めよ。
$0 \leqq x \leqq \frac{\sqrt3}{2},\ \ \ y \geqq 0,\ \ \ y \leqq x^2,\ \ \ (x-a)^2+y^2 \geqq r^2$
2022立教学部経済学部過去問
ルートを含む方程式
単元:
#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$\sqrt{2x-1} - \sqrt {x-1} = \sqrt {6-x}$
岡山県立大学
この動画を見る
方程式を解け
$\sqrt{2x-1} - \sqrt {x-1} = \sqrt {6-x}$
岡山県立大学
3つの素数の平方の和が素数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
p,q,rは相異なる素数$p^2+q^2+r^2$が素数となるための必要条件を2つ以上挙げてください.
この動画を見る
p,q,rは相異なる素数$p^2+q^2+r^2$が素数となるための必要条件を2つ以上挙げてください.
2つの円と正方形
階乗の方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{(x^2-1)!}{x^2-1} = 23!$のとき
x=?
この動画を見る
$\frac{(x^2-1)!}{x^2-1} = 23!$のとき
x=?
気付けば一瞬!! 関数は図形の問題として捉えよ
福田の数学〜立教大学2022年経済学部第1問(4)〜表が連続して出ない確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
コインを5回投げるとき、表が連続して2回以上出ない確率を求めよ。
ただし、コインを1回投げたとき、 表が出る確率および裏が出る確率はそれぞれ1/2であるとする。
2022立教大学経済学部過去問
この動画を見る
コインを5回投げるとき、表が連続して2回以上出ない確率を求めよ。
ただし、コインを1回投げたとき、 表が出る確率および裏が出る確率はそれぞれ1/2であるとする。
2022立教大学経済学部過去問
中学生向け整数問題その3
単元:
#中2数学#式の計算(単項式・多項式・式の四則計算)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数A,Bの最大公約数が6で最小公倍数は432である.(A,B)をすべて求めよ.
この動画を見る
自然数A,Bの最大公約数が6で最小公倍数は432である.(A,B)をすべて求めよ.
福田の数学〜立教大学2022年経済学部第1問(3)〜整式の割り算と余り
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
aを定数とする。
3次式 $F(x)=x^3-6x+a$を2次式$G(x)=x^2 -3x+2$で割った余りを$R(x)$ とする。
G(x)がR(x)で割り切れるようなaの値をすべて求めよ。
2022立教大学経済学部過去問
この動画を見る
aを定数とする。
3次式 $F(x)=x^3-6x+a$を2次式$G(x)=x^2 -3x+2$で割った余りを$R(x)$ とする。
G(x)がR(x)で割り切れるようなaの値をすべて求めよ。
2022立教大学経済学部過去問
中学生向け整数問題その2
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
m,nを自然数とする.
$6mn=9m-10n+303$を満たす(m,n)をすべて求めよ.
この動画を見る
m,nを自然数とする.
$6mn=9m-10n+303$を満たす(m,n)をすべて求めよ.
おうぎ形の折り返し 東工大附属
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
何度?
*図は動画内参照
東京工業大学附属科学技術高等学校
この動画を見る
何度?
*図は動画内参照
東京工業大学附属科学技術高等学校
マークシート適当で満点の確率は?
【数学】オイラーの定理の公式 笑っちゃう覚え方
単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
オイラーの定理の公式 笑っちゃう覚え方に関して解説していきます.
この動画を見る
オイラーの定理の公式 笑っちゃう覚え方に関して解説していきます.
【3分で解決!一度は解きたい典型問題!】整数:大阪府公立高等学校~全国入試問題解法
単元:
#数学(中学生)#整数の性質#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連続する3つの整数の和が2022となるとき
この連続する3つの整数のうち最も小さい整数を求めなさい.
大阪府高校過去問
この動画を見る
連続する3つの整数の和が2022となるとき
この連続する3つの整数のうち最も小さい整数を求めなさい.
大阪府高校過去問
気付けば一瞬の確率 愛工大名電(愛知)
単元:
#数学(中学生)#数A#場合の数と確率#確率#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
A,Bの2人が、5種類のメニューの中からそれぞれ好きな料理を1つ選んで注文する。
2人の選んだ料理が異なる確率は?
愛知工業大学名電高等学校
この動画を見る
A,Bの2人が、5種類のメニューの中からそれぞれ好きな料理を1つ選んで注文する。
2人の選んだ料理が異なる確率は?
愛知工業大学名電高等学校
円周角 広島県
【数学IA】コレだけやれば50点はとれます【最短で50点突破】(共通テスト)
単元:
#数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学IA】点数獲得のための勉強法紹介動画です
この動画を見る
【数学IA】点数獲得のための勉強法紹介動画です
角の二等分線+平行線=❓ 山形県
福田の数学〜立教大学2022年理学部第1問(5)〜最大公約数と最小公倍数
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\ a \lt b$ を満たす自然数の組a$,\ b$の和が119、最小公倍数が462であるとき、
$a=\boxed{\ \ キ\ \ },\ b=\boxed{\ \ ク\ \ }$である。
2022立教大学理学部過去問
この動画を見る
$\ a \lt b$ を満たす自然数の組a$,\ b$の和が119、最小公倍数が462であるとき、
$a=\boxed{\ \ キ\ \ },\ b=\boxed{\ \ ク\ \ }$である。
2022立教大学理学部過去問
青森県 正答率15%
【高校数学あるある】階乗の末尾に0はいくつ並ぶ? #Shorts
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
150!の末尾が0の個数を求めよ。
この動画を見る
150!の末尾が0の個数を求めよ。
長方形の中にある二等辺三角形
素数が絡んだ整数問題(再アップ)【青山学院大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
素数$p,q$および自然数$n$に対し,$\dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{pq}=\dfrac{1}{n}$が成り立つような$(p,q,n)$の組をすべて求めよ。
青山学院大過去問
この動画を見る
素数$p,q$および自然数$n$に対し,$\dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{pq}=\dfrac{1}{n}$が成り立つような$(p,q,n)$の組をすべて求めよ。
青山学院大過去問
福田の数学〜立教大学2022年理学部第1問(3)〜垂線の足の位置ベクトル
単元:
#数A#大学入試過去問(数学)#図形の性質#平面上のベクトル#三角形の辺の比(内分・外分・二等分線)#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
三角形ABCにおいて、$AB=5,\ AC=6$、角Aの大きさは$\frac{\pi}{3}$であるとする。
Aから辺BCに垂線AHを下ろす。このとき$BH:CH=\boxed{ウ}:\boxed{エ}$である。
2022立教大学理学部過去問
この動画を見る
三角形ABCにおいて、$AB=5,\ AC=6$、角Aの大きさは$\frac{\pi}{3}$であるとする。
Aから辺BCに垂線AHを下ろす。このとき$BH:CH=\boxed{ウ}:\boxed{エ}$である。
2022立教大学理学部過去問
補助線引けるかな
福田の数学〜立教大学2022年理学部第1問(2)〜余事象と確率の加法定理
単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
下図のように1から9までの数字が1つずつ記入された、9枚のカードがある。
$\boxed{1}\ \ \ \boxed{2}\ \ \ \boxed{3}\ \ \ \boxed{4}\ \ \ \boxed{5}\ \ \ \boxed{6}\ \ \ \boxed{7}\ \ \ \boxed{8}\ \ \ \boxed{9}$
これら9枚のカードから同時に取り出した3枚のカードの数字の積が
10で割り切れる確率は$\boxed{イ}$である。
2022立教大学理学部過去問
この動画を見る
下図のように1から9までの数字が1つずつ記入された、9枚のカードがある。
$\boxed{1}\ \ \ \boxed{2}\ \ \ \boxed{3}\ \ \ \boxed{4}\ \ \ \boxed{5}\ \ \ \boxed{6}\ \ \ \boxed{7}\ \ \ \boxed{8}\ \ \ \boxed{9}$
これら9枚のカードから同時に取り出した3枚のカードの数字の積が
10で割り切れる確率は$\boxed{イ}$である。
2022立教大学理学部過去問
精度90%の検査で陽性だったら90%陽性?答えが直感と違う?慶應(看護)
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
サイコロを3つ振ったら出た目の最小値が2であった.3つの目がどの2つも互いに素である確率を求めよ.
慶應(看護)過去問
この動画を見る
サイコロを3つ振ったら出た目の最小値が2であった.3つの目がどの2つも互いに素である確率を求めよ.
慶應(看護)過去問
ただの分数式だけど
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
a,bは正の整数である.
$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{2018}$を満たす(a,b)を全て求めよ.ただし1009は素数とする.
この動画を見る
a,bは正の整数である.
$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{2018}$を満たす(a,b)を全て求めよ.ただし1009は素数とする.
数のいれかえ 東海高校(改)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
ある2つの位の数をいれかえるともとの整数より90大きくなる。
このような3ケタの自然数は何個ある?
東海高等学校(改)
この動画を見る
ある2つの位の数をいれかえるともとの整数より90大きくなる。
このような3ケタの自然数は何個ある?
東海高等学校(改)