数Ⅱ - 質問解決D.B.(データベース) - Page 78

数Ⅱ

06愛知県教員採用試験(数学:1番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$0\leqq \theta \leqq \dfrac{\pi}{6}$とする.
$\cos\theta+k\sin\theta=k-1$が解をもつとき,
$k$の値を求めよ.
この動画を見る 

13京都府教員採用試験(数学:2番 積分・不等式の証明)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
(1)$a\gt 1,\displaystyle \int_{1}^{a} \dfrac{1}{x^2+2x}\ dx$

(2)$n$を自然数とする.
$\dfrac{n(3n+5)}{(n+1)(n+2)}\gt 2\log\dfrac{3(n+1)}{n+3}$
を示せ.
この動画を見る 

藤田医科大 複素数の計算

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-x+1=0$
$12x^{2026}+23x^{2025}+34x^{2024}+45x^{2023}+$
$56x^{2022}+67^{2021}$の値を求めよ.

2021藤田医科大過去問
この動画を見る 

2021 神戸大(文)複素数の累乗

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$(3+i)^n$
$n=2,3,4,5$の値と虚部の整数を$10$で割った余りを求めよ.
②$(3+i)^n$は虚数であることを示せ.($n$は自然数)

2021神戸大(文)
この動画を見る 

04岡山県教員採用試験(数学:6-(2) 積分)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#不定積分・定積分#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6} - (2)$
$\displaystyle \int_{}^{} (\sin^{-1} x)^2 \ dx$を計算せよ.
この動画を見る 

cosの積 華麗な解法で綺麗な答え

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\displaystyle \prod_{k=1}^7 \cos\dfrac{\pi}{15}\pi=$
$\cos\dfrac{\pi}{15}\cos\dfrac{2\pi}{15}\cos\dfrac{3\pi}{15}\cos\dfrac{4\pi}{15}\cos\dfrac{5\pi}{15}\cos\dfrac{6\pi}{15}\cos\dfrac{7\pi}{15}$
この動画を見る 

複素関数論⑬ 高専数学*4(複素積分の極限)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#微分法と積分法#複素数#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$k\gt 0$,$C_k:z=(k-t)+it$であり,
$0\leqq t\leqq k$とするとき,以下を解け.

(1)$\vert z\vert \geqq \dfrac{k}{\sqrt2},\left\vert\dfrac{e^{iz}}{z}\right\vert \leqq \dfrac{\sqrt2 e^{-t}}{k}$

(2)$\displaystyle \lim_{k\to\infty} \displaystyle \int_{c_k}^{} \dfrac{e^{iz}}{z} dz=0$
この動画を見る 

04岡山県教員採用試験(数学:4番 積分)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#不定積分・定積分#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$\displaystyle \int_{}^{} \sin^{-1}x \ dx$を計算せよ.
この動画を見る 

方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$x$を実数とする.

$\sqrt{x^2+3x+2}-\sqrt{x^2+2x+5}=3-x$
この動画を見る 

04京都府教員採用試験(数学:6番 ネピアの数の性質)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$n\in IN$,$\displaystyle \lim_{n\to\infty} \left(1+\dfrac{1}{n}\right)^n=e$
を満たすとき,
$x\in IR$,$\displaystyle \lim_{x\to\infty}\left(1+\dfrac{1}{x}\right)^n=e$
を示せ.
この動画を見る 

複素関数論⑫:複素積分の絶対値の評価(高専数学)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#微分法と積分法#複素数#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$C:z=z(t),a\leqq t\leqq b$とする.
$\vert \displaystyle \int_{c}^{} f(z)dz \vert\leqq \displaystyle \int_{a}^{b} \vert f(z(t)\dfrac{dz}{dt}\vert dt $
を示せ.
この動画を見る 

とある奈良県教員採用試験の問題(数学:接線の数)

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#接線と増減表・最大値・最小値#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
点$P(a,0)$を通り,
曲線$y=\dfrac{x}{\log_x}\ (x\gt 1)$に接する直線が
2本引けるように$a$の値の範囲を求めよ.
この動画を見る 

16京都府教員採用試験(数学:1番 積分)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#不定積分・定積分#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$n \in IN$とする.
$2(\sqrt{n+1}-1)\lt 1+\dfrac{1}{\sqrt 2}+\dfrac{1}{\sqrt 3}+・・・+\dfrac{1}{\sqrt n}$
これを解け.
この動画を見る 

いつかの奈良県教員採用試験(数学:バームクーヘンの定理)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#面積、体積#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$y=\sin x\ (0\leqq x \leqq \pi)$と
$x$軸で囲まれた部分を$y$軸を中心として
回転させる体積$V$を求めよ.
この動画を見る 

【数Ⅱ】微分法と積分法:2021年度東大文科第1問を典型解法で攻略!

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の実数とする。座標平面上の曲線Cを$y=ax^3-2x$で定める。原点を中心とする半径1の円とCの共有点の個数が6個であるようなaの範囲を求めよ。
この動画を見る 

09愛知県教員採用試験(数学:3番 指数・対数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$25^{\log_5 3^x}-4\sqrt3・3^x=-9$を解け.
この動画を見る 

複素関数論⑪ 三角形の周の複素積分 高専数学*3(3)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
複素関数論⑪ 三角形の周の複素積分を解説していきます.
この動画を見る 

16愛知県教員採用試験(数学:5番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$0\leqq x\leqq \pi$とする.
$\sin 2x-2(\sin x+\cos x)-k=0$の
実数解の個数を調べよ.
この動画を見る 

30度 45度 60度の直線の式  A 慶應義塾 2021

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#三角関数#三角関数とグラフ#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
A,B,Cの座標をaを用いて表せ
*図は動画内参照

2021慶應義塾高等学校
この動画を見る 

15愛知県教員採用試験(数学:6番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$\left(\sin\theta+\dfrac{1}{2}\right)^2+\left(\cos\theta+\dfrac{1}{2}\right)^2=2$のとき,
$\sin\theta,\cos\theta$を解にもつ二次方程式も1つを求めよ.
この動画を見る 

京都大2021 素数という条件は必要か

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$が素数なら$P^4+14$は素数でないことを示せ.

2021京都大過去問
この動画を見る 

2021京都大 秒殺整数問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$が素数なら$P^4+14$は素数でないことを示せ.

2021京都大過去問
この動画を見る 

複素関数論⑩ 高専数学 複素積分*ex2, *2

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$C_{\alpha}:Z=\alpha+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C\alpha}^{} \ \dfrac{1}{(Z-\alpha)^n}\ \alpha_Z$

(2) $C_{\alpha}:Z=1+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C}^{} \ \dfrac{2}{Z-1}\ \alpha_Z$
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第5問〜ベクトルの図形への応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$ 座標平面上で、原点$O$を通り、$\overrightarrow{ u }=(\cos\theta,  \sin\theta)$を方向ベクトルとする直線を
lとおく。ただし、$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$とする。

(1)$\theta \neq \displaystyle \frac{\pi}{2}$とする。直線lの法線ベクトルで、$y$成分が正であり、大きさが
1のベクトルを$\ \overrightarrow{ n }\ $とおく。点$P(1,1)$に対し、$\overrightarrow{ OP }=s\ \overrightarrow{ u }+t\ \overrightarrow{ n }$と表す。$a=\cos\theta,$
$b=\sin\theta$として、$s,t$のそれぞれを$a,b$についての1次式で表すと、$s=\boxed{\ \ テ\ \ },$
$t=\boxed{\ \ ト\ \ }$である。
点$P(1,1)$から直線lに垂線を下ろし、直線$l$との交点を$Q$とする。ただし、点$P$
が直線$l$上にあるときは、点$Q$は$P$とする。以下では$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$とする。

(2)線分$PQ$の長さは、$\theta=\boxed{\ \ ナ\ \ }$のとき最大となる。
さらに、点$R(-3,1)$から直線$l$に垂線を下ろし、直線$l$との交点を$S$とする。
ただし、点$R$が直線$l$上にあるときは、点$S$は$R$とする。

(3)線分$QS$を$1:3$に内分する点を$T$とおく。$\theta$が$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$を満たしながら
動くとき、点$T(x,y)$が描く軌跡の方程式は$\boxed{\ \ ニ\ \ }=0$である。

(4)$PQ^2+RS^2$の最大値は$\boxed{\ \ ヌ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 

14愛知県教員採用試験(数学:5番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$
$0\leqq \theta \leqq \dfrac{\pi}{2}$
$\sin3\theta+\sqrt 3\cos3\theta=\sqrt2$を解け.
この動画を見る 

練習問題18 どっかの教採の問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$f(\theta)=\sin2\theta+\sin\theta-\cos\theta+k\ (0\leqq \theta\leqq \pi)$
$f(\theta)=0$が異なる3つの解をもつような$k$の範囲を求めよ.
この動画を見る 

約束記号  C 慶應義塾 2021

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#三角関数#加法定理とその応用#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,b,c,d,e,fは0より大きく1より小さい実数
$T(x,y)=\frac{x+y}{1-x \times y}$
$T(a,f) = T(b,e) = T(c,d) = 1$のとき
$(1+a)(1+b)(1+c)(1+d)(1+e)(1+f) =$

2021慶應義塾高等学校
この動画を見る 

複素関数論⑨ 高専数学 複素積分*1(1)-(3)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#積分とその応用#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
複素積分の定義を解説していきます.
この動画を見る 

いろいろな方法で解こう

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\left(\dfrac{1}{2021}\right)$ VS $\left(\dfrac{1}{2022}\right)^{2021}$
どちらが大きいか?
この動画を見る 

07大阪府教員採用試験(数学:1番 三角関数と極限)

アイキャッチ画像
単元: #数Ⅱ#三角関数#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$x-2\sin\theta-\cos2\theta$
$y=\displaystyle \sum_{n=1}^{\infty} \left(\dfrac{x}{6}\right)^n$のとりうる値の範囲を求めよ.
この動画を見る 
PAGE TOP