数Ⅱ

福田の一夜漬け数学〜図形と方程式〜円の方程式(13)放物線と円の位置関係、高校2年生

単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 放物線$y=x^2+a$ $\cdots$①と円$x^2+y^2=9$ $\cdots$②の共有点の個数を求めよ。
この動画を見る
${\Large\boxed{1}}$ 放物線$y=x^2+a$ $\cdots$①と円$x^2+y^2=9$ $\cdots$②の共有点の個数を求めよ。
防衛大・三重大 漸化式 三次関数 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#数列#漸化式#防衛大学校#数学(高校生)#三重大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
防衛大学過去問題
$S_n$は初項からn項までの和
$S_n=1-(2n^2+n-1)a_n$
(1)$a_n$をnを用いて表せ。
(2)$\displaystyle\sum_{k=1}^{20}a_n$
三重大学過去問題
$f(x)=2x^3-9x^2+12x$と$y=kx$が2点のみを共有するkの値
この動画を見る
防衛大学過去問題
$S_n$は初項からn項までの和
$S_n=1-(2n^2+n-1)a_n$
(1)$a_n$をnを用いて表せ。
(2)$\displaystyle\sum_{k=1}^{20}a_n$
三重大学過去問題
$f(x)=2x^3-9x^2+12x$と$y=kx$が2点のみを共有するkの値
福田の一夜漬け数学〜図形と方程式〜円の方程式(12)共通接線、高校2年生

単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$(x-4)^2+y^2=1$ $\cdots$②
の共通接線を全て求めよ。
この動画を見る
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$(x-4)^2+y^2=1$ $\cdots$②
の共通接線を全て求めよ。
早稲田 微分・積分 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
$f(x)=(x+\frac{1}{2})^2,g(x)=\int_a^x f(t) dt$
$y=f(x)$と$y=g(x)$が異なる3点で交わるようなaの範囲
この動画を見る
早稲田大学過去問題
$f(x)=(x+\frac{1}{2})^2,g(x)=\int_a^x f(t) dt$
$y=f(x)$と$y=g(x)$が異なる3点で交わるようなaの範囲
福田の一夜漬け数学〜図形と方程式〜円の方程式(11)円群と共通弦、高校2年生

単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$x^2+y^2+4x-2y+4=0$ $\cdots$②について、
(1)2つの円は、異なる2点で交わることを示せ。
(2)2つの円の交点を通る直線の方程式を求めよ。
(3)2つの円の交点と原点を通る円の方程式を求めよ。
${\Large\boxed{2}}$ 中心$(a,b),$半径2の円と円$x^2+y^2=9$ $\cdots$①との2つの共有点を通る直線
の方程式が$6x-2y-15=0$となるような点$(a,b)$を求めよ。
この動画を見る
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$x^2+y^2+4x-2y+4=0$ $\cdots$②について、
(1)2つの円は、異なる2点で交わることを示せ。
(2)2つの円の交点を通る直線の方程式を求めよ。
(3)2つの円の交点と原点を通る円の方程式を求めよ。
${\Large\boxed{2}}$ 中心$(a,b),$半径2の円と円$x^2+y^2=9$ $\cdots$①との2つの共有点を通る直線
の方程式が$6x-2y-15=0$となるような点$(a,b)$を求めよ。
放物線 光は1点に集る

単元:
#数Ⅰ#数Ⅱ#2次関数#三角関数#微分法と積分法#加法定理とその応用#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=x$に$y$軸t平行に入った光はある一点を必ず通ることを示せ.
この動画を見る
$y=x$に$y$軸t平行に入った光はある一点を必ず通ることを示せ.
福田の一夜漬け数学〜図形と方程式〜円の方程式(10)2円の位置関係、高校2年生

単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=10$ $\cdots$①, $x^2+y^2-2ax-6ay+40a-50=0$ $\cdots$②
が接するように、定数aの値を求めよ。
この動画を見る
${\Large\boxed{1}}$ 2つの円$x^2+y^2=10$ $\cdots$①, $x^2+y^2-2ax-6ay+40a-50=0$ $\cdots$②
が接するように、定数aの値を求めよ。
筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#筑波大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。
横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
この動画を見る
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。
横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
福田の一夜漬け数学〜図形と方程式〜円の方程式(9)外から引いた接線(中心が原点以外の場合)、高校2年生

単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#点と直線#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$(x+2)^2+(y-2)^2=10$ の接線で、点(2,4)を通るものを求めよ。
また、接点の座標を求めよ。
この動画を見る
${\Large\boxed{1}}$ 円$(x+2)^2+(y-2)^2=10$ の接線で、点(2,4)を通るものを求めよ。
また、接点の座標を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(8)外から引いた接線(原点中心の円の場合)、高校2年生

単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#点と直線#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=5$ の接線で、点(3,1)を通るものを求めよ。
また、接点の座標を求めよ。
この動画を見る
${\Large\boxed{1}}$ 円$x^2+y^2=5$ の接線で、点(3,1)を通るものを求めよ。
また、接点の座標を求めよ。
三重大学 対数方程式 整数解の個数 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
三重大学過去問題
$α>0$
$f(x)=log_3(-\frac{1}{2}x^2+\frac{1}{2}αx+9)$
f(x)が整数となるxが$0 \leqq x \leqq α$の範囲でちょうど6個あるようなαの範囲
この動画を見る
三重大学過去問題
$α>0$
$f(x)=log_3(-\frac{1}{2}x^2+\frac{1}{2}αx+9)$
f(x)が整数となるxが$0 \leqq x \leqq α$の範囲でちょうど6個あるようなαの範囲
福田の一夜漬け数学〜図形と方程式〜円の方程式(7)接線の公式と極線の公式、高校2年生

単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (1)円$x^2+y^2=25$ 上の点$(-4,3)$における接線の方程式を求めよ。
(2)円$x^2+y^2-2x+6y=0$ 上の点$(2,-6)$における接線の方程式を求めよ。
(3)円$x^2+y^2=25$ $\cdots$①の外部の点$A(3,8)$から円①に2本の接線を引き、
その2つの接点を$P,Q$とする。直線$PQ$の方程式を求めよ。
この動画を見る
${\Large\boxed{1}}$ (1)円$x^2+y^2=25$ 上の点$(-4,3)$における接線の方程式を求めよ。
(2)円$x^2+y^2-2x+6y=0$ 上の点$(2,-6)$における接線の方程式を求めよ。
(3)円$x^2+y^2=25$ $\cdots$①の外部の点$A(3,8)$から円①に2本の接線を引き、
その2つの接点を$P,Q$とする。直線$PQ$の方程式を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(6)切り取られる弦の長さと中点(応用2)、高校2年生

単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=4$ $\cdots$①, 直線$y=m(x-4)$ $\cdots$②がある。次の問いに答えよ。
(1)①②が異なる2点で交わるように定数$m$の値の範囲を求めよ。
(2)(1)のとき、②が①によって切り取られる弦の中点の座標を$m$を用いて表せ。
(3)(1)で求めた範囲を$m$が動くとき、(2)の中点はどんな図形を描くか。
この動画を見る
${\Large\boxed{1}}$ 円$x^2+y^2=4$ $\cdots$①, 直線$y=m(x-4)$ $\cdots$②がある。次の問いに答えよ。
(1)①②が異なる2点で交わるように定数$m$の値の範囲を求めよ。
(2)(1)のとき、②が①によって切り取られる弦の中点の座標を$m$を用いて表せ。
(3)(1)で求めた範囲を$m$が動くとき、(2)の中点はどんな図形を描くか。
福田の一夜漬け数学〜図形と方程式〜円の方程式(5)切り取られる弦の長さと中点(応用1)、高校2年生

単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2-4x+2y-4=0$ $\cdots$①が直線$x+2y+k=0$ $\cdots$②
から切り取る弦の長さが4であるとき、定数$k$の値を求めよ。
${\Large\boxed{2}}$ 直線$\ell:y=2x+a$ が放物線$C:y=x^2$ によって切り取られる弦
の長さが10となるように定数$a$の値を求めよ。
この動画を見る
${\Large\boxed{1}}$ 円$x^2+y^2-4x+2y-4=0$ $\cdots$①が直線$x+2y+k=0$ $\cdots$②
から切り取る弦の長さが4であるとき、定数$k$の値を求めよ。
${\Large\boxed{2}}$ 直線$\ell:y=2x+a$ が放物線$C:y=x^2$ によって切り取られる弦
の長さが10となるように定数$a$の値を求めよ。
島根大(医】三角関数 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
島根大学過去問題
$y=4sin2x(sinx+cosx)+\sqrt2sin(x+45^\circ)$
$0^\circ \leqq x <180^\circ$
(1)この関数の最大値とそのときのxの値
(2)この関数の最小値を求めよ。またそのときのxの値をθとするとき、$cos(θ+45^\circ)$の値を求めよ。
この動画を見る
島根大学過去問題
$y=4sin2x(sinx+cosx)+\sqrt2sin(x+45^\circ)$
$0^\circ \leqq x <180^\circ$
(1)この関数の最大値とそのときのxの値
(2)この関数の最小値を求めよ。またそのときのxの値をθとするとき、$cos(θ+45^\circ)$の値を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(4)切り取られる弦の長さと中点(基本)、高校2年生

単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2+4x-2y-1=0$ $\cdots$①と直線$4x+3y-5=0$ $\cdots$②
の交点を$A,B$とする。線分$AB$の長さと、中点の座標を求めよ。
この動画を見る
${\Large\boxed{1}}$ 円$x^2+y^2+4x-2y-1=0$ $\cdots$①と直線$4x+3y-5=0$ $\cdots$②
の交点を$A,B$とする。線分$AB$の長さと、中点の座標を求めよ。
ヨビノリたくみ技 長崎大 三次関数 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
長崎大学過去問題
$f(x)=x^3-6x^2+3kx$
(1)y=f(x)が極大値極小値をもつようなkの範囲
(2)y=f(x)の極大値と極小値の差が4となるkの値
この動画を見る
長崎大学過去問題
$f(x)=x^3-6x^2+3kx$
(1)y=f(x)が極大値極小値をもつようなkの範囲
(2)y=f(x)の極大値と極小値の差が4となるkの値
福田の一夜漬け数学〜図形と方程式〜円の方程式(3)直線と円の位置関係、高校2年生

単元:
#数Ⅱ#円#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 直線$mx-y-(3m-1)=0$ と円$x^2+y^2=2$ の位置関係を調べよ。
この動画を見る
${\Large\boxed{1}}$ 直線$mx-y-(3m-1)=0$ と円$x^2+y^2=2$ の位置関係を調べよ。
広島大 素数・対数不等式 高校数学 Japanese university entrance exam questions

単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
①
(1)P自然数
$P^3+(P+1)^3+(P+2)^3$は9の倍数であることを示せ。
(2)P>3 PとP+2がともに素数のときP+1は6の倍数であることを示せ。
②
不等式$log_2(x-1) \leqq log_4(2x-1)$
この動画を見る
広島大学過去問題
①
(1)P自然数
$P^3+(P+1)^3+(P+2)^3$は9の倍数であることを示せ。
(2)P>3 PとP+2がともに素数のときP+1は6の倍数であることを示せ。
②
不等式$log_2(x-1) \leqq log_4(2x-1)$
福田の一夜漬け数学〜図形と方程式〜円の方程式(2)三角形の外心、高校2年生

単元:
#数A#数Ⅱ#図形の性質#内心・外心・重心とチェバ・メネラウス#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 3点$A(-2,6),B(1,-3),C(5,-1)$を頂点とする$\triangle ABC$の外心の座標を求めよ。
この動画を見る
${\Large\boxed{1}}$ 3点$A(-2,6),B(1,-3),C(5,-1)$を頂点とする$\triangle ABC$の外心の座標を求めよ。
日本医科大・日大(医) Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#日本医科大学#日本大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
日本大学過去問題
$y=x^3-2x^2+2x-1$と1点で接し、その他の共有点をもたない直線の方程式を求めよ。
日本医科大学過去問題
$tx^4-x+3t=0$が異なる2つの実数解をもつような実数tの範囲
この動画を見る
日本大学過去問題
$y=x^3-2x^2+2x-1$と1点で接し、その他の共有点をもたない直線の方程式を求めよ。
日本医科大学過去問題
$tx^4-x+3t=0$が異なる2つの実数解をもつような実数tの範囲
福田の一夜漬け数学〜図形と方程式〜円の方程式(1)基本、高校2年生

単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の条件を満たす円の方程式を求めよ。
(1)2点$A(-3,-4),B(5,8)$を直径の両端とする円。
(2)$x$軸、$y$軸の両方に接し、点$A(-4,2)$を通る円。
(3)点$A(1,1)$を通り、$y$軸に接し、中心が直線$\ell:y=2x$
上にある円。
この動画を見る
${\Large\boxed{1}}$ 次の条件を満たす円の方程式を求めよ。
(1)2点$A(-3,-4),B(5,8)$を直径の両端とする円。
(2)$x$軸、$y$軸の両方に接し、点$A(-4,2)$を通る円。
(3)点$A(1,1)$を通り、$y$軸に接し、中心が直線$\ell:y=2x$
上にある円。
福田の一夜漬け数学〜図形と方程式〜直線の方程式(9)点と直線の距離の公式と三角形の内心、高校2年生

単元:
#数A#数Ⅱ#図形の性質#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 3直線$\ell:3x+4y-36=0,$ $m:4x-3y+27=0,$ $n:3x-4y-20=0$で
囲まれた三角形の内心の座標を求めよ。
この動画を見る
${\Large\boxed{1}}$ 3直線$\ell:3x+4y-36=0,$ $m:4x-3y+27=0,$ $n:3x-4y-20=0$で
囲まれた三角形の内心の座標を求めよ。
慶應義塾 解と係数の関係・対数方程式 Japanese university entrance exam questions

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#解と判別式・解と係数の関係#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
[1]$ x ^ 2 - x + 1 = 0$ の解をα、$x^2+x-1=0$の解をβとする。
(1)$α^n=1$となる最小のnを求めよ。
(2)αβは、$x^4+▢x^3+▢x^2+▢x+▢=0$の解である。
(3)上記の4次方程式の4つの解の平方の和 を求めよ。
[2]以下の連立方程式を解け、
\begin{eqnarray}
\left\{
\begin{array}{l}
log_2(x + y) + log_2(1 - x) = 0 \\
y = - x ^ 2 + 4x + 1
\end{array}
\right.
\end{eqnarray}
・Q 慶應大学医学部の初代医学部長は は何を発見したことで有名か?
この動画を見る
慶応義塾大学過去問題
[1]$ x ^ 2 - x + 1 = 0$ の解をα、$x^2+x-1=0$の解をβとする。
(1)$α^n=1$となる最小のnを求めよ。
(2)αβは、$x^4+▢x^3+▢x^2+▢x+▢=0$の解である。
(3)上記の4次方程式の4つの解の平方の和 を求めよ。
[2]以下の連立方程式を解け、
\begin{eqnarray}
\left\{
\begin{array}{l}
log_2(x + y) + log_2(1 - x) = 0 \\
y = - x ^ 2 + 4x + 1
\end{array}
\right.
\end{eqnarray}
・Q 慶應大学医学部の初代医学部長は は何を発見したことで有名か?
福田の一夜漬け数学〜図形と方程式〜直線の方程式(8)点と直線の距離の公式と角の二等分線、高校2年生

単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2直線$\ell:5x+12y+2=0,$ $m:12x+5y-19=0$
の間の角を二等分する直線の方程式を求めよ。
この動画を見る
${\Large\boxed{1}}$ 2直線$\ell:5x+12y+2=0,$ $m:12x+5y-19=0$
の間の角を二等分する直線の方程式を求めよ。
大阪大 4次関数 高校数学 Japanese university entrance exam questions

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#微分法と積分法#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
'90大阪大学過去問題
(a,0)を通り、$y=x^4-2x^2+1$に接する直線がx軸以外にただ1本存在するようなaの値をすべて求めよ。
この動画を見る
'90大阪大学過去問題
(a,0)を通り、$y=x^4-2x^2+1$に接する直線がx軸以外にただ1本存在するようなaの値をすべて求めよ。
福田の一夜漬け数学〜図形と方程式〜直線の方程式(7)点と直線の距離の公式と面積公式、高校2年生

単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 放物線$y=x^2$上の点$P$と、直線$x-2y-4=0$上の点との距離の最小値を
求めよ。また、そのときの点$P$の座標を求めよ。
${\Large\boxed{2}}$ $O(0,0),A(a,b),B(c,d)$とする。
(1)$\triangle OAB$の面積を$S$とする。$S=\displaystyle \frac{1}{2}|ad-bc|$であることを証明せよ。
(2)(1)を利用して、$A(3,5),B(5,2),C(1,1)$に対し、$\triangle ABC$の面積を求めよ。
この動画を見る
${\Large\boxed{1}}$ 放物線$y=x^2$上の点$P$と、直線$x-2y-4=0$上の点との距離の最小値を
求めよ。また、そのときの点$P$の座標を求めよ。
${\Large\boxed{2}}$ $O(0,0),A(a,b),B(c,d)$とする。
(1)$\triangle OAB$の面積を$S$とする。$S=\displaystyle \frac{1}{2}|ad-bc|$であることを証明せよ。
(2)(1)を利用して、$A(3,5),B(5,2),C(1,1)$に対し、$\triangle ABC$の面積を求めよ。
福田の一夜漬け数学〜図形と方程式〜直線の方程式(6)点と直線の距離の公式・基本、高校2年生

単元:
#数Ⅱ#図形と方程式#円と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点(1,5)と直線$4x-3y+1=0$ の距離を求めよ。
${\Large\boxed{2}}$ 平行な2直線$2x-y+1=$, $2x-y-3=0$ の距離を求めよ。
${\Large\boxed{3}}$ 原点中心、半径2の円と直線$mx-y-3m+2=0$
が異なる2点で交わるように$m$の値の範囲を求めよ。
この動画を見る
${\Large\boxed{1}}$ 点(1,5)と直線$4x-3y+1=0$ の距離を求めよ。
${\Large\boxed{2}}$ 平行な2直線$2x-y+1=$, $2x-y-3=0$ の距離を求めよ。
${\Large\boxed{3}}$ 原点中心、半径2の円と直線$mx-y-3m+2=0$
が異なる2点で交わるように$m$の値の範囲を求めよ。
横国大・滋賀大 積・商の微分 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
滋賀大学過去問題
①$\{ f(x)g(x) \} '= f'(x)g(x)+f(x)g'(x) $
②$\frac{d}{dx} \{ f(x) \}^n =n \{ f(x) \}^{n-1}・f'(x)$
横浜国立大学過去問題
$x^3+a(x^2+x-1)=0$が相異3実数解をもつaの範囲
この動画を見る
滋賀大学過去問題
①$\{ f(x)g(x) \} '= f'(x)g(x)+f(x)g'(x) $
②$\frac{d}{dx} \{ f(x) \}^n =n \{ f(x) \}^{n-1}・f'(x)$
横浜国立大学過去問題
$x^3+a(x^2+x-1)=0$が相異3実数解をもつaの範囲
福田の一夜漬け数学〜図形と方程式〜直線の方程式(5)直線群と軌跡、高校2年生

単元:
#数Ⅱ#図形と方程式#円と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2直線$x+5y-7=0$ $\cdots$①, $2x-y-4=0$ $\cdots$②の交点を通り、
直線$x+4y-6=0$ に垂直な直線の方程式を求めよ。
${\Large\boxed{2}}$ $m$が実数全体を動くとき、次の2直線の交点$P$はどんな図形を描くか。
$mx-y=0$ $\cdots$① $x+my-m-2=0$ $\cdots$②
この動画を見る
${\Large\boxed{1}}$ 2直線$x+5y-7=0$ $\cdots$①, $2x-y-4=0$ $\cdots$②の交点を通り、
直線$x+4y-6=0$ に垂直な直線の方程式を求めよ。
${\Large\boxed{2}}$ $m$が実数全体を動くとき、次の2直線の交点$P$はどんな図形を描くか。
$mx-y=0$ $\cdots$① $x+my-m-2=0$ $\cdots$②