関数と極限
13神奈川県教員採用試験(数学:9番 数列の極限値)
単元:
#関数と極限#数列の極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
9⃣$a_1=1,a_2=2,(a_{n+2})^5 =(a_{n+1})^4・a_n$
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ。
この動画を見る
9⃣$a_1=1,a_2=2,(a_{n+2})^5 =(a_{n+1})^4・a_n$
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ。
円周率πが無理数であることの証明(数III)
単元:
#関数と極限#積分とその応用#数列の極限#不定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
定理(1947,IvanNiren)
πは無理数である
補題1
${}^∀a \in \mathbb{R}$ , $\displaystyle \lim_{ n \to \infty } \frac{a^n}{n!}=0$ $(n \in \mathbb{N})$
補題2
$f(x)=\frac{1}{n!}p^nx^n(\pi - x)^n$ $(p,n \in \mathbb{N})$
nが十分大きいとき
$0 < \int_0^{\pi} f(x) dx < 1$
この動画を見る
定理(1947,IvanNiren)
πは無理数である
補題1
${}^∀a \in \mathbb{R}$ , $\displaystyle \lim_{ n \to \infty } \frac{a^n}{n!}=0$ $(n \in \mathbb{N})$
補題2
$f(x)=\frac{1}{n!}p^nx^n(\pi - x)^n$ $(p,n \in \mathbb{N})$
nが十分大きいとき
$0 < \int_0^{\pi} f(x) dx < 1$
慶應義塾大(医)数列の極限
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.これを解け.
$a_n=\sqrt{n^2+n+5}$
$\displaystyle \lim_{n\to \infty}(a_n-[a_n])$
慶應(医)過去問
この動画を見る
$n$は自然数とする.これを解け.
$a_n=\sqrt{n^2+n+5}$
$\displaystyle \lim_{n\to \infty}(a_n-[a_n])$
慶應(医)過去問
17神奈川県教員採用試験(数学:9番 無限級数)
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
9⃣$\displaystyle \sum_{n=1}^\infty (\frac{1}{2})^n sin\frac{n \pi}{ 2}$
この動画を見る
9⃣$\displaystyle \sum_{n=1}^\infty (\frac{1}{2})^n sin\frac{n \pi}{ 2}$
東京電機大 4次関数と直線の共有点
単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^3+x$と$y=k(x-1)$の共有点の個数を求めよ.
東京電機大過去問
この動画を見る
$f(x)=x^4-2x^3+x$と$y=k(x-1)$の共有点の個数を求めよ.
東京電機大過去問
09奈良県教員採用試験(数学:4番 積分)
単元:
#関数と極限#積分とその応用#数列の極限#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
4⃣ $a_n = 1+ \frac{1}{2}+ \frac{1}{3}+ \cdots + \frac{1}{n} - logn$
(1)$a_n>0$を示せ。
(2)$\displaystyle \lim_{ n \to \infty } a_n $が存在することを示せ。
この動画を見る
4⃣ $a_n = 1+ \frac{1}{2}+ \frac{1}{3}+ \cdots + \frac{1}{n} - logn$
(1)$a_n>0$を示せ。
(2)$\displaystyle \lim_{ n \to \infty } a_n $が存在することを示せ。
11奈良県教員採用試験(数学:高校3番 逆関数と積分)
単元:
#数Ⅱ#指数関数と対数関数#指数関数#対数関数#関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
3⃣高 $f(x)=\frac{e^x+e^{-x}}{2}$ $(x \geqq 0)$の逆関数をg(x)
(1)g(x)を求めよ。
(2)y=g(x),x=2,x軸で囲まれた面積
この動画を見る
3⃣高 $f(x)=\frac{e^x+e^{-x}}{2}$ $(x \geqq 0)$の逆関数をg(x)
(1)g(x)を求めよ。
(2)y=g(x),x=2,x軸で囲まれた面積
16神奈川県教員採用試験(数学:8番 数列の極限)
単元:
#数列#漸化式#関数と極限#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
8⃣ $3S_n=a_n+6n+1$のとき$\displaystyle \lim_{ n \to \infty } a_n$を求めよ。
この動画を見る
8⃣ $3S_n=a_n+6n+1$のとき$\displaystyle \lim_{ n \to \infty } a_n$を求めよ。
【数Ⅲ】極限:福島県立医大! 極限値lim[n→∞]l[n]_θ[n]を求めよ。
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に2点A(2,0),B(0,1)がある。自然数nに対し、線分ABを1:nに内分する点を$P_n$とし,$∠AOP_n=θ_n$とする。ただし、$0<θ_n<\dfrac{\pi}{2}$である。線分$AP_n$の長さを$l_n$として、極限値$\displaystyle \lim_{n\to \infty}\dfrac{l_n}{\theta_n}$を求めよ。
この動画を見る
Oを原点とする座標平面上に2点A(2,0),B(0,1)がある。自然数nに対し、線分ABを1:nに内分する点を$P_n$とし,$∠AOP_n=θ_n$とする。ただし、$0<θ_n<\dfrac{\pi}{2}$である。線分$AP_n$の長さを$l_n$として、極限値$\displaystyle \lim_{n\to \infty}\dfrac{l_n}{\theta_n}$を求めよ。
【数Ⅲ】極限:岐阜大の類題! 複素数z[n]をz[1]=1,z[n+1]=i/2(z[n]+1)(n=1,2,3,···)により定める。z[n]の実部x[n],虚部y[n]を求めよ。
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
複素数$z_1$を$z_1=1$,$z_{n+1}=\dfrac{1}{2}(z_n+1)(n=1,2,3,···)$により定める。$z_n$の実部$x_n$,虚部$y_n$を求めよ。
この動画を見る
複素数$z_1$を$z_1=1$,$z_{n+1}=\dfrac{1}{2}(z_n+1)(n=1,2,3,···)$により定める。$z_n$の実部$x_n$,虚部$y_n$を求めよ。
東工大 末尾の0の個数問題
単元:
#関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$f(n)$を$n!$の末尾に並ぶ$0$の個数とする.
(例)$f(10)=2,f(100)=24$
$\displaystyle \lim_{n\to\infty}\dfrac{f(10^n)}{10^n}$を求めよ.
1991東工大過去問
この動画を見る
$n$は自然数である.
$f(n)$を$n!$の末尾に並ぶ$0$の個数とする.
(例)$f(10)=2,f(100)=24$
$\displaystyle \lim_{n\to\infty}\dfrac{f(10^n)}{10^n}$を求めよ.
1991東工大過去問
三角関数の基本 合成公式 図書館情報大
単元:
#数Ⅱ#三角関数#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt3\sin 2x+2\sin^2x-1$,$0\leqq x\lt \pi$における最大値,最小値を求めよ.
1985図書館情報大過去問
この動画を見る
$\sqrt3\sin 2x+2\sin^2x-1$,$0\leqq x\lt \pi$における最大値,最小値を求めよ.
1985図書館情報大過去問
慶応義塾大 4次方程式
単元:
#関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3x^4-4x^3-12x^2-k=0$が相異なる4つの実数解をもつ$k$の範囲
そのときの4つの解のうち最大のものを$\alpha$とする。
$\alpha$の範囲を求めよ
出典:1989年慶應義塾大学 過去問
この動画を見る
$3x^4-4x^3-12x^2-k=0$が相異なる4つの実数解をもつ$k$の範囲
そのときの4つの解のうち最大のものを$\alpha$とする。
$\alpha$の範囲を求めよ
出典:1989年慶應義塾大学 過去問
信州大 三次方程式の解の極限値
単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#数列の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#信州大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2x^3+3nx^2-3(n+1)=0(n$自然数$)$
(1)
$n$の値に関わらず正の解をただ一つだけもつことを示せ
(2)
正の解を$\alpha_n$とする。
$\displaystyle \lim_{ n \to \infty }\alpha_n$を求めよ
出典:1998年信州大学 過去問
この動画を見る
$2x^3+3nx^2-3(n+1)=0(n$自然数$)$
(1)
$n$の値に関わらず正の解をただ一つだけもつことを示せ
(2)
正の解を$\alpha_n$とする。
$\displaystyle \lim_{ n \to \infty }\alpha_n$を求めよ
出典:1998年信州大学 過去問
ヨビノリのマンデー積分をぶっ飛ばせ!刺客は本人
単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数、$x,y$実数
$\displaystyle \int_{0}^{ 1 } (\sin(2n\pi t)-xt-y)^2dt$の最小値を$I_n$とおく
$\displaystyle \lim_{ n \to \infty }I_n$を求めよ
出典:2019年九州大学 過去問
この動画を見る
$n$自然数、$x,y$実数
$\displaystyle \int_{0}^{ 1 } (\sin(2n\pi t)-xt-y)^2dt$の最小値を$I_n$とおく
$\displaystyle \lim_{ n \to \infty }I_n$を求めよ
出典:2019年九州大学 過去問
京都大 合成関数 不等式
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \geqq 2,f(x)=(x+a)(x+2)$
$f(f(x)) \gt 0$がすべての実数$x$に対して成り立つような$a$の範囲を求めよ
出典:2013年京都大学 過去問
この動画を見る
$a \geqq 2,f(x)=(x+a)(x+2)$
$f(f(x)) \gt 0$がすべての実数$x$に対して成り立つような$a$の範囲を求めよ
出典:2013年京都大学 過去問
素数の逆数の和は収束か発散か?杉山&ヨビノリたくみ
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{1}{2}+\displaystyle \frac{1}{3}+\displaystyle \frac{1}{5}+…+\displaystyle \frac{1}{p}+…=?$
この動画を見る
$\displaystyle \frac{1}{2}+\displaystyle \frac{1}{3}+\displaystyle \frac{1}{5}+…+\displaystyle \frac{1}{p}+…=?$
もっちゃんと真面目に数学 素数、完全数、約数の個数、総和、メルセンヌ素数、調和級数発散のお話
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
素数、完全数、約数の個数、総和、メルセンヌ素数、調和級数発散 解説動画です
この動画を見る
素数、完全数、約数の個数、総和、メルセンヌ素数、調和級数発散 解説動画です
自治医科大学
単元:
#大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数C#数Ⅲ#自治医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
$\displaystyle \frac{1}{1-\alpha}+\displaystyle \frac{1}{1-\alpha^2}+\displaystyle \frac{1}{1-\alpha^3}+\displaystyle \frac{1}{1-\alpha^4}+$
$\displaystyle \frac{1}{1-\alpha^5}+\displaystyle \frac{1}{1-\alpha^6}$
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{3\sin 4x}{x+\sin x}$
出典:2017年自治医科大学 過去問
この動画を見る
(1)
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
$\displaystyle \frac{1}{1-\alpha}+\displaystyle \frac{1}{1-\alpha^2}+\displaystyle \frac{1}{1-\alpha^3}+\displaystyle \frac{1}{1-\alpha^4}+$
$\displaystyle \frac{1}{1-\alpha^5}+\displaystyle \frac{1}{1-\alpha^6}$
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{3\sin 4x}{x+\sin x}$
出典:2017年自治医科大学 過去問
東工大 極限 東大大学院 数学科卒 杉山さん
単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数
半径$\displaystyle \frac{1}{n}$の円を重ならないように、半径1の円に外接させる。
外接する円の最大個数を$a_{n}$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{a_{n}}{n}$を求めよ
出典:1992年東京工業大学 過去問
この動画を見る
$n$自然数
半径$\displaystyle \frac{1}{n}$の円を重ならないように、半径1の円に外接させる。
外接する円の最大個数を$a_{n}$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{a_{n}}{n}$を求めよ
出典:1992年東京工業大学 過去問
What is e?? The essence of e. Why (e^x)’=e^x
単元:
#関数と極限#微分とその応用#数列の極限#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$\displaystyle \lim_{ n \to \infty }(1+\displaystyle \frac{1}{n})^n$
$\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$
(2)
$y=e^x$
(3)
動画内の図を見て求めよ
(4)
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
この動画を見る
(1)
$\displaystyle \lim_{ n \to \infty }(1+\displaystyle \frac{1}{n})^n$
$\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$
(2)
$y=e^x$
(3)
動画内の図を見て求めよ
(4)
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
名古屋市立(医)積分 初のVチューバー解説 アイシアちゃん/仮の姿は東大数学科院卒杉山聡
単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n:$自然数
$S_{n}:y=e^{-x}\sin x$と$y$軸の囲む面積$((n-1)\pi \leqq x \leqq n\pi)$
(1)
$S_{n}$は?
(2)
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n S_{k}$は?
この動画を見る
$n:$自然数
$S_{n}:y=e^{-x}\sin x$と$y$軸の囲む面積$((n-1)\pi \leqq x \leqq n\pi)$
(1)
$S_{n}$は?
(2)
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n S_{k}$は?
これから数Ⅲを学ぶ人に贈る「ネイピア数eってなんだよ?」
単元:
#数Ⅱ#指数関数と対数関数#指数関数#対数関数#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
①
$e=\displaystyle \lim_{ x \to \infty }(1+\displaystyle \frac{1}{n})^n$
$=\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$
②
$y=e^x$ $y^1=e^x$
③
動画内の図をみて求めよ
④
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
この動画を見る
①
$e=\displaystyle \lim_{ x \to \infty }(1+\displaystyle \frac{1}{n})^n$
$=\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$
②
$y=e^x$ $y^1=e^x$
③
動画内の図をみて求めよ
④
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
でんがんとヨビノリを脇に添えてもっちゃんとバーゼル問題を解く!
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\frac{1}{1^2}+$$\frac{1}{2^2}+$$\frac{1}{3^2}・・・+$$\frac{1}{n^2}=$$\frac{\pi^2}{6}$
この動画を見る
$\frac{1}{1^2}+$$\frac{1}{2^2}+$$\frac{1}{3^2}・・・+$$\frac{1}{n^2}=$$\frac{\pi^2}{6}$
京都大 微分 合成関数 Mathematics Japanese university entrance exam Kyoto University
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
1993年 国立大学法人京都大学
$f(x)=x^3-3ax$
$(1)f(x)=t$が相違3実根をもつ$a,t$の条件
$(2)g(x)=f(f(x)),g(x)=0$
が相違9実根をもつ$a$の範囲
この動画を見る
1993年 国立大学法人京都大学
$f(x)=x^3-3ax$
$(1)f(x)=t$が相違3実根をもつ$a,t$の条件
$(2)g(x)=f(f(x)),g(x)=0$
が相違9実根をもつ$a$の範囲
【高校数学】数Ⅲ-119 関数の極限④
単元:
#関数と極限#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(関数の極値④)
①関数$f(x)=x^2e^{ax}$が$x=1$で極値をとるような定数$a$の値とそのときの極値を求めよ。
➁関数$f(x)=\frac{ax+b}{x^2+1}$が$x=1$で極大値$2$を持つような定数$a,b$を求めよ。
この動画を見る
数Ⅲ(関数の極値④)
①関数$f(x)=x^2e^{ax}$が$x=1$で極値をとるような定数$a$の値とそのときの極値を求めよ。
➁関数$f(x)=\frac{ax+b}{x^2+1}$が$x=1$で極大値$2$を持つような定数$a,b$を求めよ。
東大(文)三次方程式と合成関数 実数解の個数 高校数学 Mathematics Japanese university entrance exam Tokyo University
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
2004東京大学過去問題
$f(x)=x^3-3x$
$g(x)= \{ f(x) \}^3-3f(x)$
$h(x)= \{ g(x) \}^3-3g(x)$
(1)f(x)=a (実数)を満たす実数xの個数
(2)g(x)=0を満たす実数xの個数
(3)h(x)=0を満たす実数xの個数
この動画を見る
2004東京大学過去問題
$f(x)=x^3-3x$
$g(x)= \{ f(x) \}^3-3f(x)$
$h(x)= \{ g(x) \}^3-3g(x)$
(1)f(x)=a (実数)を満たす実数xの個数
(2)g(x)=0を満たす実数xの個数
(3)h(x)=0を満たす実数xの個数
慶應(医)3次方程式 ほぼ文系知識で解けます Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$8x^3-6x+1=0$の3つの解をα,β,γ
(1)0<x<1の範囲にある実数解の個数
(2)$\displaystyle\sum_{n=0}^{\infty}(α^n+β^n+γ^n)$
この動画を見る
慶応義塾大学過去問題
$8x^3-6x+1=0$の3つの解をα,β,γ
(1)0<x<1の範囲にある実数解の個数
(2)$\displaystyle\sum_{n=0}^{\infty}(α^n+β^n+γ^n)$
浜松医大 確率 サイコロ4個・n個 高校数学 Mathematics Japanese university entrance exam
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
浜松医科大学過去問題
(1)4個のサイコロを投げて1,1,2,2のように同じ目がちょうど2個ずつでる確率
(2)n=4,5,6・・・としてn個のサイコロを投げて、少なくとも(n-2)個のサイコロに同じ目がそろって出る確率$P_n$
また$\displaystyle\lim_{n \to \infty}\frac{P_n+1}{P_n}$
この動画を見る
浜松医科大学過去問題
(1)4個のサイコロを投げて1,1,2,2のように同じ目がちょうど2個ずつでる確率
(2)n=4,5,6・・・としてn個のサイコロを投げて、少なくとも(n-2)個のサイコロに同じ目がそろって出る確率$P_n$
また$\displaystyle\lim_{n \to \infty}\frac{P_n+1}{P_n}$
東大 入試問題 天才ヨビノリのたくみさんが解説 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
東京大学1990
$a_n=\displaystyle\sum_{k=1}^n\frac{1}{\sqrt k}$,$b_n=\displaystyle\sum_{k=1}^n\frac{1}{\sqrt {2k+1}}$
とするとき、$\displaystyle\lim_{n \to \infty}a_n,\displaystyle\lim_{n \to \infty}\frac{b_n}{a_n}$を求めよ。
この動画を見る
東京大学1990
$a_n=\displaystyle\sum_{k=1}^n\frac{1}{\sqrt k}$,$b_n=\displaystyle\sum_{k=1}^n\frac{1}{\sqrt {2k+1}}$
とするとき、$\displaystyle\lim_{n \to \infty}a_n,\displaystyle\lim_{n \to \infty}\frac{b_n}{a_n}$を求めよ。