積分とその応用
#61数検1級1次「よくできた問題」
単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$(x-1)^7-(x^7-1)$を実数係数の範囲で因数分解せよ
出典:数検1級1次
この動画を見る
$(x-1)^7-(x^7-1)$を実数係数の範囲で因数分解せよ
出典:数検1級1次
#会津大学(2009) #定積分 #Shorts
単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} (3x^3-1)log\ x\ dx$
出典:2009年会津大学
この動画を見る
$\displaystyle \int_{1}^{2} (3x^3-1)log\ x\ dx$
出典:2009年会津大学
#59数検1級1次「国立大の入試問題の代表的な題材」
単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$n$を正の整数とするとき定積分
$\displaystyle \int_{0}^{1} (log_e\ x)^n\ dx$の値を$n$に関する式で表せ。
出典:数検1級1次
この動画を見る
$n$を正の整数とするとき定積分
$\displaystyle \int_{0}^{1} (log_e\ x)^n\ dx$の値を$n$に関する式で表せ。
出典:数検1級1次
【高校数学】遂に完結!!北海道大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分104日目~47都道府県制覇への道~【㊼北海道】【最終回】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【北海道大学 2024】
関数
$f(x)=xlog(x+2)+1 (x>-2)$
を考える。$y=f(x)$で表される曲線を$C$とする。$C$の接線のうち傾きが正で原点を通るものを$l$とする。ただし、$logt$は$t$の自然対数である。
(1) 直線$l$の方程式を求めよ。
(2) 曲線$C$は下に凸であることを証明せよ。
(3) $C$と$l$および$y$軸で囲まれた部分の面積を求めよ。
この動画を見る
【北海道大学 2024】
関数
$f(x)=xlog(x+2)+1 (x>-2)$
を考える。$y=f(x)$で表される曲線を$C$とする。$C$の接線のうち傾きが正で原点を通るものを$l$とする。ただし、$logt$は$t$の自然対数である。
(1) 直線$l$の方程式を求めよ。
(2) 曲線$C$は下に凸であることを証明せよ。
(3) $C$と$l$および$y$軸で囲まれた部分の面積を求めよ。
大学入試問題#783「おもろいタイプ」 岡山県立大学中期(2011) #定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#岡山県立大学
指導講師:
ますただ
問題文全文(内容文):
$f(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{1}{\sqrt{ 1-t^2 }}\ dt(0 \leq x \leq 1)$において
$\displaystyle \int_{0}^{\frac{1}{2}} f(x)\ dx$を求めよ
出典:2011年青山県立大学中期 入試問題
この動画を見る
$f(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{1}{\sqrt{ 1-t^2 }}\ dt(0 \leq x \leq 1)$において
$\displaystyle \int_{0}^{\frac{1}{2}} f(x)\ dx$を求めよ
出典:2011年青山県立大学中期 入試問題
【高校数学】弘前大学の積分の問題をその場で解説しながら解いてみた!毎日積分103日目~47都道府県制覇への道~【㊻青森】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【弘前大学 2023】
$\displaystyle \int_\frac{-π}{4}^\frac{π}{3}\frac{x}{cos^2x}dx$
この動画を見る
【弘前大学 2023】
$\displaystyle \int_\frac{-π}{4}^\frac{π}{3}\frac{x}{cos^2x}dx$
大学入試問題#782「もう何回目だろうか」 横浜市立大学(2004) #区分求積法
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#横浜市立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \{\displaystyle \frac{(2n+1)(2n+2)・・・(2n+n)}{(n+1)(n+2)・・・(n+n)}\}^\frac{1}{n}$
出典:2004年横浜市立大学 入試問題
この動画を見る
$\displaystyle \lim_{ n \to \infty } \{\displaystyle \frac{(2n+1)(2n+2)・・・(2n+n)}{(n+1)(n+2)・・・(n+n)}\}^\frac{1}{n}$
出典:2004年横浜市立大学 入試問題
#宮崎大学(2017) #定積分 #Shorts
単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} x\sqrt{ 2-x }\ dx$
出典:2017年宮崎大学
この動画を見る
$\displaystyle \int_{0}^{2} x\sqrt{ 2-x }\ dx$
出典:2017年宮崎大学
【高校数学】岩手大学の積分の問題をその場で解説しながら解いてみた!毎日積分102日目~47都道府県制覇への道~【㊺岩手】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
■【岩手大学 2023】
(1) 不定積分$\displaystyle \int \frac{x^2}{\sqrt{x-1}}dx$を求めよ
(2) 次の曲線と$x$軸で囲まれた図形の面積を求めよ。
$\displaystyle y=cos2x+\frac{1}{2} (\frac{π}{4}≦x≦\frac{3}{4}π)$
(3) 曲線$y=\sqrt{x+1}e^{2x}$と$x$軸、$y$軸、および直線$x=1$で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積を求めよ。
この動画を見る
■【岩手大学 2023】
(1) 不定積分$\displaystyle \int \frac{x^2}{\sqrt{x-1}}dx$を求めよ
(2) 次の曲線と$x$軸で囲まれた図形の面積を求めよ。
$\displaystyle y=cos2x+\frac{1}{2} (\frac{π}{4}≦x≦\frac{3}{4}π)$
(3) 曲線$y=\sqrt{x+1}e^{2x}$と$x$軸、$y$軸、および直線$x=1$で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積を求めよ。
大学入試問題#781「絶対値付きの積分は、なんか苦手!」 久留米大学医学部(2005) #定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#久留米大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} |\sin\ x-2\sin\ 2x|\ dx$
出典:2005年久留米大学医学部 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} |\sin\ x-2\sin\ 2x|\ dx$
出典:2005年久留米大学医学部 入試問題
【高校数学】秋田大学の積分の問題をその場で解説しながら解いてみた!毎日積分101日目~47都道府県制覇への道~【㊹秋田】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【秋田大学 2023】
座標平面上に媒介変数$θ$を用いて
$x=2cosθ, y=1+sinθ$
と表される曲線$C$がある。次の問いに答えなさい。
(i) 媒介変数$θ$を消去して$x$と$y$の関係式を求めなさい。
(ii) $\displaystyle θ=\frac{π}{6}$に対応する点における$C$の接線$l$の方程式を求めなさい。
(iii) 曲線$C$と(ii)の接線$l$および$x$軸で囲まれた図形の面積を求めなさい。
この動画を見る
【秋田大学 2023】
座標平面上に媒介変数$θ$を用いて
$x=2cosθ, y=1+sinθ$
と表される曲線$C$がある。次の問いに答えなさい。
(i) 媒介変数$θ$を消去して$x$と$y$の関係式を求めなさい。
(ii) $\displaystyle θ=\frac{π}{6}$に対応する点における$C$の接線$l$の方程式を求めなさい。
(iii) 曲線$C$と(ii)の接線$l$および$x$軸で囲まれた図形の面積を求めなさい。
大学入試問題#780「この当て方は、凄すぎ!横浜市立の先生は視聴者かな!?w」 横浜市立大学(2024) #定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#横浜市立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^2}{(x\ \sin\ x+\cos\ x)^2} dx$
出典:2024年横浜市立大学
この動画を見る
$\displaystyle \int \displaystyle \frac{x^2}{(x\ \sin\ x+\cos\ x)^2} dx$
出典:2024年横浜市立大学
#広島市立大学(2011) #定積分 #Shorts
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{(x^2+1)^2}$
出典:2011年広島市立大学
この動画を見る
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{(x^2+1)^2}$
出典:2011年広島市立大学
【高校数学】東北大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分100日目~47都道府県制覇への道~【㊸宮城】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【東北大学 2024】
$xyz$空間内の$xy$平面上にある円$C:x^2+y^2=1$および円板$D:x²+y²≦1$を考える。$D$を底面とし点$P(0,0,1)$を頂点とする円錐を$K$とする。$A(0,-1,0),B(0,1,0)$とする。$xyz$空間内の平面$H:z=x$を考える。すなわち、$H$は$xz$平面上の直線$z=x$と線分$AB$をともに含む平面である。$K$の側面と$H$の交わりとしてできる曲線を$E$とする。$\displaystyle -\frac{π}{2}≦θ≦\frac{π}{2}$を満たす実数$θ$に対し、円$C$上の点$Q(cosθ,sinθ,0)$をとり、線分$PQ$と$E$の共有点を$R$とする。
(1) 線分$PR$の長さを$r(θ)$とおく。$r(θ)$を$θ$を用いて表せ。
(2)円錐$K$の側面のうち、曲線$E$の点$A$から点$R$までを結ぶ部分、線分$PA$,および線分$PR$により囲まれた部分の面積を$S(θ)$とおく。$θ$と実数$h$が条件$\displaystyle 0≦θ<θ+h≦\frac{π}{2}$を満たすとき、次の不等式が成り立つことを示せ。
$\displaystyle \frac{h\{{r(θ)}\}^2}{2\sqrt{2}}≦S(θ+h)-S(θ)≦\frac{h\{{r(θ+h)\}}^2}{2\sqrt{2}}$
(3) 円錐$K$の側面のうち、円$C$の$x≧0$の部分と曲線$E$により囲まれた部分の面積を$T$とおく。$T$を求めよ。必要であれば$\displaystyle tan\frac{θ}{2}=u$とおく置換積分を用いてもよい。
この動画を見る
【東北大学 2024】
$xyz$空間内の$xy$平面上にある円$C:x^2+y^2=1$および円板$D:x²+y²≦1$を考える。$D$を底面とし点$P(0,0,1)$を頂点とする円錐を$K$とする。$A(0,-1,0),B(0,1,0)$とする。$xyz$空間内の平面$H:z=x$を考える。すなわち、$H$は$xz$平面上の直線$z=x$と線分$AB$をともに含む平面である。$K$の側面と$H$の交わりとしてできる曲線を$E$とする。$\displaystyle -\frac{π}{2}≦θ≦\frac{π}{2}$を満たす実数$θ$に対し、円$C$上の点$Q(cosθ,sinθ,0)$をとり、線分$PQ$と$E$の共有点を$R$とする。
(1) 線分$PR$の長さを$r(θ)$とおく。$r(θ)$を$θ$を用いて表せ。
(2)円錐$K$の側面のうち、曲線$E$の点$A$から点$R$までを結ぶ部分、線分$PA$,および線分$PR$により囲まれた部分の面積を$S(θ)$とおく。$θ$と実数$h$が条件$\displaystyle 0≦θ<θ+h≦\frac{π}{2}$を満たすとき、次の不等式が成り立つことを示せ。
$\displaystyle \frac{h\{{r(θ)}\}^2}{2\sqrt{2}}≦S(θ+h)-S(θ)≦\frac{h\{{r(θ+h)\}}^2}{2\sqrt{2}}$
(3) 円錐$K$の側面のうち、円$C$の$x≧0$の部分と曲線$E$により囲まれた部分の面積を$T$とおく。$T$を求めよ。必要であれば$\displaystyle tan\frac{θ}{2}=u$とおく置換積分を用いてもよい。
【高校数学】山形大学の積分の問題をその場で解説しながら解いてみた!毎日積分99日目~47都道府県制覇への道~【㊷山形】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【山形大学 2023】
曲線$y=x^4+2x^3-3x^2$を$C$とし、$C$上の点$P(1,0)$における接線を$L$とするとき、次の(i),(ii),(iii)に答えよ。
(i) 接線$L$の方程式を求めよ。
(ii) 曲線$C$と接線$L$の共有点の座標を求めよ。
(iii) 曲線$C$と接線$L$で囲まれた部分の面積を求めよ。
この動画を見る
【山形大学 2023】
曲線$y=x^4+2x^3-3x^2$を$C$とし、$C$上の点$P(1,0)$における接線を$L$とするとき、次の(i),(ii),(iii)に答えよ。
(i) 接線$L$の方程式を求めよ。
(ii) 曲線$C$と接線$L$の共有点の座標を求めよ。
(iii) 曲線$C$と接線$L$で囲まれた部分の面積を求めよ。
大学入試問題#778「ウォリス積分なら一撃」 横浜国立大学(1994) #定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^3\theta\ \cos2\theta\ d\theta$
出典:1994年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^3\theta\ \cos2\theta\ d\theta$
出典:1994年横浜国立大学 入試問題
【高校数学】福島大学の積分の問題をその場で解説しながら解いてみた!毎日積分98日目~47都道府県制覇への道~【㊶福島】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【福島大学 2023】
$a,p$を実数とする。曲線$C:y=2log_e x$が直線$l:y=ax$と点$P(p,ap)$で接している。このとき、以下の問いに答えなさい。
(1) 実数$p,a$の値を求めなさい。
(2) 曲線$C$と直線$x=p,y=0$で囲まれた図形の面積$S$を求めなさい。
(3) 関数$y=x(log_e x)^2$を$x$について微分しなさい。
(4) 曲線$C$と直線$l,y=0$で囲まれた図形を$x$軸のまわりに1回転してできる立体の体積$V$を求めなさい。
この動画を見る
【福島大学 2023】
$a,p$を実数とする。曲線$C:y=2log_e x$が直線$l:y=ax$と点$P(p,ap)$で接している。このとき、以下の問いに答えなさい。
(1) 実数$p,a$の値を求めなさい。
(2) 曲線$C$と直線$x=p,y=0$で囲まれた図形の面積$S$を求めなさい。
(3) 関数$y=x(log_e x)^2$を$x$について微分しなさい。
(4) 曲線$C$と直線$l,y=0$で囲まれた図形を$x$軸のまわりに1回転してできる立体の体積$V$を求めなさい。
【高校数学】宇都宮大学の積分の問題をその場で解説しながら解いてみた!毎日積分97日目~47都道府県制覇への道~【㊵栃木】【毎日17時投稿】
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【宇都宮大学 2023】
関数$f(x)=|x-1|, g(x)=e^{-2x+1}$により定まる座標平面上の曲線$y=(f\circ g)(x)$を$C$とする。ただし、$e$は自然対数の底で$e=2.71828…$である。次の問いに答えよ。
(1) $(f\circ g)(0)$および$\displaystyle \lim_{x \to \infty}(f\circ g)(x)$を求めよ。
(2) 座標平面上に曲線$C$の概形を図示せよ。
(3) $\displaystyle \frac{1}{2}<t<1$を満たす実数$t$に対し、$\displaystyle F(t)=(f\circ g)(\frac{t}{2})+(f\circ g)(t)$と定める。$F(t)$の増減を調べ、極値およびそのときの$t$の値を求めよ。
(4) 曲線$C$と直線$\displaystyle l:y=\frac{1}{2}$で囲まれる部分の面積$S$を求めよ。
この動画を見る
【宇都宮大学 2023】
関数$f(x)=|x-1|, g(x)=e^{-2x+1}$により定まる座標平面上の曲線$y=(f\circ g)(x)$を$C$とする。ただし、$e$は自然対数の底で$e=2.71828…$である。次の問いに答えよ。
(1) $(f\circ g)(0)$および$\displaystyle \lim_{x \to \infty}(f\circ g)(x)$を求めよ。
(2) 座標平面上に曲線$C$の概形を図示せよ。
(3) $\displaystyle \frac{1}{2}<t<1$を満たす実数$t$に対し、$\displaystyle F(t)=(f\circ g)(\frac{t}{2})+(f\circ g)(t)$と定める。$F(t)$の増減を調べ、極値およびそのときの$t$の値を求めよ。
(4) 曲線$C$と直線$\displaystyle l:y=\frac{1}{2}$で囲まれる部分の面積$S$を求めよ。
大学入試問題#776「シグマの気持ち」 横浜国立大学(1996)
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to +\infty } \displaystyle \frac{1}{n}log\{\displaystyle \frac{n}{n}・\displaystyle \frac{n+2}{n}・\displaystyle \frac{n+4}{n}・・・\displaystyle \frac{n+2(n-1)}{n}\}$
出典:1996年横浜国立大学
この動画を見る
$\displaystyle \lim_{ n \to +\infty } \displaystyle \frac{1}{n}log\{\displaystyle \frac{n}{n}・\displaystyle \frac{n+2}{n}・\displaystyle \frac{n+4}{n}・・・\displaystyle \frac{n+2(n-1)}{n}\}$
出典:1996年横浜国立大学
#広島市立大学(2016) #定積分 #Shorts
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{1}{2}} \displaystyle \frac{x}{(2x+1)^2} dx$
出典:2016年広島市立大学
この動画を見る
$\displaystyle \int_{0}^{\frac{1}{2}} \displaystyle \frac{x}{(2x+1)^2} dx$
出典:2016年広島市立大学
【高校数学】群馬大学医学部の積分の問題をその場で解説しながら解いてみた!毎日積分96日目~47都道府県制覇への道~【㊴群馬】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【群馬大学(医) 2023】
$xy$平面上において、不等式$(ye^x)^2≦(sin2x)^2, 0≦x≦π$の表す領域を$D$とし、領域$D$と直線$x=a$の共通部分の線分の長さを$l(a)$とする。以下の問に答えよ。
(1) $l(a)$が$a=a_0$で最大となるとき、$tana_0$の値を求めよ。
(2)領域$D$の面積を求めよ。
この動画を見る
【群馬大学(医) 2023】
$xy$平面上において、不等式$(ye^x)^2≦(sin2x)^2, 0≦x≦π$の表す領域を$D$とし、領域$D$と直線$x=a$の共通部分の線分の長さを$l(a)$とする。以下の問に答えよ。
(1) $l(a)$が$a=a_0$で最大となるとき、$tana_0$の値を求めよ。
(2)領域$D$の面積を求めよ。
福田のおもしろ数学091〜定積分と軌跡
単元:
#数Ⅱ#図形と方程式#軌跡と領域#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\int_x^y(|t|-1)dt$=0 を満たす点($x$,$y$)の軌跡を図示せよ。
この動画を見る
$\displaystyle\int_x^y(|t|-1)dt$=0 を満たす点($x$,$y$)の軌跡を図示せよ。
大学入試問題#775「ほぼ、詰んでる」 横浜国立大学(1998) #定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi} x^2|\sin\ x|\ dx$
出典:1998年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{2\pi} x^2|\sin\ x|\ dx$
出典:1998年横浜国立大学 入試問題
【高校数学】筑波大学の積分の問題をその場で解説しながら解いてみた!毎日積分95日目~47都道府県制覇への道~【㊳茨城】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【筑波大学 2023】
$a,b$を実数とし、$f(x)=x+asinx, g(x)=bcosx$とする。
(1) 定積分$\displaystyle \int_{-π}^{π}f(x)g(x)dx$を求めよ。
(2)不等式
$\displaystyle \int_{-π}^{π}\{f(x)+g(x)\}^2dx≧\int_{-π}^{π}\{f(x)\}^2dx$
が成り立つことを示せ。
(3) 曲線$y=|f(x)+g(x)|$, 2直線$x=-π, x=π,$および$x$軸で囲まれた図形を$x$軸の周りに1回転させてできる回転体の体積を$V$とする。このとき不等式
$\displaystyle V≧\frac{2}{3}π^2(π^2-6)$
が成り立つことを示せ。さらに、等号が成立するときの$a,b$を求めよ。
この動画を見る
【筑波大学 2023】
$a,b$を実数とし、$f(x)=x+asinx, g(x)=bcosx$とする。
(1) 定積分$\displaystyle \int_{-π}^{π}f(x)g(x)dx$を求めよ。
(2)不等式
$\displaystyle \int_{-π}^{π}\{f(x)+g(x)\}^2dx≧\int_{-π}^{π}\{f(x)\}^2dx$
が成り立つことを示せ。
(3) 曲線$y=|f(x)+g(x)|$, 2直線$x=-π, x=π,$および$x$軸で囲まれた図形を$x$軸の周りに1回転させてできる回転体の体積を$V$とする。このとき不等式
$\displaystyle V≧\frac{2}{3}π^2(π^2-6)$
が成り立つことを示せ。さらに、等号が成立するときの$a,b$を求めよ。
大学入試問題#774「基本的な良問」 横浜国立大学(1998) #定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e-1} \displaystyle \frac{log(log(x+1))}{x+1} dx$
出典:1998年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{1}^{e-1} \displaystyle \frac{log(log(x+1))}{x+1} dx$
出典:1998年横浜国立大学 入試問題
#広島市立大学(2016) #定積分 #Shorts
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\cos^3\ x}{\sin^2\ x} dx$
出典:2016年広島市立大学
この動画を見る
$\displaystyle \int \displaystyle \frac{\cos^3\ x}{\sin^2\ x} dx$
出典:2016年広島市立大学
【高校数学】千葉大学の積分の問題をその場で解説しながら解いてみた!毎日積分94日目~47都道府県制覇への道~【㊲千葉】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【千葉大学 2023】
等式$\displaystyle f(x)=x^2+\int_{-1}^{2}(xf(t)-t)dt$を満たす関数$f(x)$を求めよ。
この動画を見る
【千葉大学 2023】
等式$\displaystyle f(x)=x^2+\int_{-1}^{2}(xf(t)-t)dt$を満たす関数$f(x)$を求めよ。
【高校数学】埼玉大学の積分の問題をその場で解説しながら解いてみた!毎日積分93日目~47都道府県制覇への道~【㊱埼玉】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【埼玉大学 2017】
関数$f(x)$は微分可能で
$\displaystyle f(x)=x^2e^{-x}+\int_0^xe^{t-x}f(t)dt$
を満たすものとする。次の問いに答えよ。
(1) $f(0),f'(0)$を求めよ。
(2) $f'(x)$を求めよ。
(3) $f(x)$を求めよ。
この動画を見る
【埼玉大学 2017】
関数$f(x)$は微分可能で
$\displaystyle f(x)=x^2e^{-x}+\int_0^xe^{t-x}f(t)dt$
を満たすものとする。次の問いに答えよ。
(1) $f(0),f'(0)$を求めよ。
(2) $f'(x)$を求めよ。
(3) $f(x)$を求めよ。
大学入試問題#772「初手は好みがでそう」 広島市立大学(2012) #不定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{log\ x}{\sqrt[ 3 ]{ x }} dx$
出典:2012年広島市立大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{log\ x}{\sqrt[ 3 ]{ x }} dx$
出典:2012年広島市立大学 入試問題
#会津大学(2023) #定積分 #Shorts
単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{1} x\sqrt{ x+3 }\ dx$
出典:2023年会津大学
この動画を見る
$\displaystyle \int_{-2}^{1} x\sqrt{ x+3 }\ dx$
出典:2023年会津大学