媒介変数表示と極座標
媒介変数表示と極座標
福田の一夜漬け数学〜図形と方程式〜軌跡(3)媒介変数表示の点、高校2年生

単元:
#数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の媒介変数表示で表された点$P(x,y)$の軌跡を求めよ。
(1)$x=\displaystyle \frac{\cos\theta+\sin\theta}{\sqrt2},$ $y=\displaystyle \frac{\cos\theta-\sin\theta}{\sqrt2}$ ($\theta$は任意の実数)
(2)$x=\displaystyle \frac{1-t^2}{1+t^2},$ $y=\displaystyle \frac{2t}{1+t^2}$ ($t$は任意の実数)
この動画を見る
${\Large\boxed{1}}$ 次の媒介変数表示で表された点$P(x,y)$の軌跡を求めよ。
(1)$x=\displaystyle \frac{\cos\theta+\sin\theta}{\sqrt2},$ $y=\displaystyle \frac{\cos\theta-\sin\theta}{\sqrt2}$ ($\theta$は任意の実数)
(2)$x=\displaystyle \frac{1-t^2}{1+t^2},$ $y=\displaystyle \frac{2t}{1+t^2}$ ($t$は任意の実数)
【高校数学】数Ⅲ-111 接線と法線④(媒介変数表示編)

単元:
#平面上の曲線#微分とその応用#接線と法線・平均値の定理#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の媒介変数で表された曲線において、
()内に示された曲線上の点における接線の方程式を求めよ。
①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=2\cos\theta \\
y=\sin\theta
\end{array}
\right.
\end{eqnarray}$$\quad \left(\theta=\dfrac{\pi}{3}\right)$
②①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\cos^3 \theta \\
y=\sin^3 \theta
\end{array}
\right.
\end{eqnarray}$$\quad \left(\theta=\dfrac{\pi}{4}\right)$
この動画を見る
次の媒介変数で表された曲線において、
()内に示された曲線上の点における接線の方程式を求めよ。
①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=2\cos\theta \\
y=\sin\theta
\end{array}
\right.
\end{eqnarray}$$\quad \left(\theta=\dfrac{\pi}{3}\right)$
②①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\cos^3 \theta \\
y=\sin^3 \theta
\end{array}
\right.
\end{eqnarray}$$\quad \left(\theta=\dfrac{\pi}{4}\right)$
【高校数学】数Ⅲ-106 媒介変数表示された関数の導関数

単元:
#平面上の曲線#微分とその応用#色々な関数の導関数#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$x$と$y$の関係が次の式で与えられるとき、
$\dfrac{dy}{dx}$を$t$で表せ。
①$x=\dfrac{1}{1+t^2},y=\dfrac{t}{1+t^2}$
②$x=a(t-\sin t),y=(1-\cos t)\quad (a\gt 0)$
この動画を見る
$x$と$y$の関係が次の式で与えられるとき、
$\dfrac{dy}{dx}$を$t$で表せ。
①$x=\dfrac{1}{1+t^2},y=\dfrac{t}{1+t^2}$
②$x=a(t-\sin t),y=(1-\cos t)\quad (a\gt 0)$
福田の一夜漬け数学〜積分・面積と体積、媒介変数表示(1)〜受験編

単元:
#平面上の曲線#積分とその応用#定積分#面積・体積・長さ・速度#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}(0 \leqq \theta \leqq 2\pi)$で表される曲線をCとする。
(1)Cとx軸で囲まれる部分の領域をDとする。Dの面積Sを求めよ。
(2)Dをx軸の周りに1回転してできる立体の体積Vを求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1 \\
y=2-t-t^2
\end{array}
\right.
\end{eqnarray}(-2 \leqq t \leqq 1)$で表される曲線とx軸で囲まれた面積を求めよ。
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}(0 \leqq \theta \leqq 2\pi)$で表される曲線をCとする。
(1)Cとx軸で囲まれる部分の領域をDとする。Dの面積Sを求めよ。
(2)Dをx軸の周りに1回転してできる立体の体積Vを求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1 \\
y=2-t-t^2
\end{array}
\right.
\end{eqnarray}(-2 \leqq t \leqq 1)$で表される曲線とx軸で囲まれた面積を求めよ。
【高校数学】数Ⅲ-43 曲線の媒介変数表示④

単元:
#平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$x、y$が$\dfrac{x^2}{2}+\dfrac{y^2}{8}=1$を満たす実数のとき、
$2x^2+xy+y^2$の最大値、最小値を求めよ。
この動画を見る
①$x、y$が$\dfrac{x^2}{2}+\dfrac{y^2}{8}=1$を満たす実数のとき、
$2x^2+xy+y^2$の最大値、最小値を求めよ。
【高校数学】数Ⅲ-42 曲線の媒介変数表示③

単元:
#平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$t$を媒介変数とする。
次の式で表される図形はどのような曲線か。
①$x=\dfrac{1}{1+t^2}、y=\dfrac{t}{1+t^2}$
②$x=t+\dfrac{1}{t}、y=t-\dfrac{1}{t} \quad (t \gt 0)$
この動画を見る
$t$を媒介変数とする。
次の式で表される図形はどのような曲線か。
①$x=\dfrac{1}{1+t^2}、y=\dfrac{t}{1+t^2}$
②$x=t+\dfrac{1}{t}、y=t-\dfrac{1}{t} \quad (t \gt 0)$
【高校数学】数Ⅲ-41 曲線の媒介変数表示②

単元:
#平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$\theta$を媒介変数とする。次の式で表される図形はどのような曲線か。
①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=3\cos\theta-2 \\
y=5\sin\theta+2
\end{array}
\right.
\end{eqnarray}$
②$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\dfrac{3}{\cos\theta}+5\\
y=2\tan\theta-1
\end{array}
\right.
\end{eqnarray}$
この動画を見る
$\theta$を媒介変数とする。次の式で表される図形はどのような曲線か。
①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=3\cos\theta-2 \\
y=5\sin\theta+2
\end{array}
\right.
\end{eqnarray}$
②$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\dfrac{3}{\cos\theta}+5\\
y=2\tan\theta-1
\end{array}
\right.
\end{eqnarray}$
【高校数学】数Ⅲ-40 曲線の媒介変数表示①

単元:
#平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の曲線を,角$\theta$を媒介変数として表せ.
①$9x^2+y^2=16$
②$x^2+y^2=16$
③$4x^2-9y^2=36$
この動画を見る
次の曲線を,角$\theta$を媒介変数として表せ.
①$9x^2+y^2=16$
②$x^2+y^2=16$
③$4x^2-9y^2=36$
