数学(高校生) - 質問解決D.B.(データベース) - Page 290

数学(高校生)

【高校数学】 数Ⅱ-11 分数式の計算④

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。

①$\displaystyle \frac{1}{(a-b)(b-c)}+\displaystyle \frac{2}{(b-c)(c-a)}+\displaystyle \frac{3}{(c-a)(a-b)}$

②$\displaystyle \frac{1}{(x-y)(x-z)}+\displaystyle \frac{1}{(y-z)(y-x)}-\displaystyle \frac{1}{(z-x)(z-y)}$
この動画を見る 

【高校数学】  数Ⅱ-10  分数式の計算③

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。


$\displaystyle \frac{x+1}{x-1}-\displaystyle \frac{x-1}{x+1} $
$\displaystyle \frac{x+1}{x-1}+\displaystyle \frac{x-1}{x+1} $


$\begin{eqnarray}
1-\frac{1}{1-\frac{1}{1-\frac{1}{a}}}
\end{eqnarray}$
この動画を見る 

【高校数学】  数Ⅱ-9  分数式の計算②

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。

①$\displaystyle \frac{x-5}{x-3}+\displaystyle \frac{2x-4}{x-3}$

②$\displaystyle \frac{x}{x+4}-\displaystyle \frac{2}{x-1}$

③$\displaystyle \frac{x+8}{x^2+x-2}+\displaystyle \frac{x-4}{x^2-x}$
この動画を見る 

【高校数学】  数Ⅱ-8  分数式の計算①

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎約分して既約分数にしよう。

①$\displaystyle \frac{8ax^2y^2}{48a^2xy^2}$

②$\displaystyle \frac{x^2-3x+2}{x^2-4x+3}$

③$\displaystyle \frac{4x^3+8xy^2}{12x^2}$

④$\displaystyle \frac{x^2-1}{x^3-1}$

◎計算しよう。

⑤$\displaystyle \frac{x}{x-1} \times \displaystyle \frac{x^2-1}{3x}$

⑥$\displaystyle \frac{x^2-x-6}{x^2+x} \times \displaystyle \frac{x^2-1}{x^2-5x+6}$
この動画を見る 

【高校数学】  数Ⅱ-7  整式の割り算③

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2-2x-1$で割ると、商が$2x-3$、余りが$-2x$になる整式は?

②$x^4-3x^3+2x^2-1$で割ると、商が$x^2+1$、余りが$3x-2$になる整式は?

③$2x^3+ax+10$で割ったときの余りが$-14$であるとき、定数$a$の値は?
この動画を見る 

【高校数学】  数Ⅱ-6  整式の割り算②

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次のxについての整式A,Bにおいて、AをBで割った商と余りを求めよう。

①$A=3x^3-7a^2x+5a^3-2ax^2,B=3x+a$

②$A=x^2+2xy+3y^2-x+y-1,B=x+3y$
この動画を見る 

【高校数学】  数Ⅱ-5  整式の割り算①

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の整式A、Bについて、AをBで割った商と余りを求めよう。

①$A=x^2-5x+6,B=x-1$

②$A=2x^3-3x+1,B=x-2$

③$A=3x^4-5x^2+2,B=x^2-x$
この動画を見る 

【高校数学】  数Ⅱ-4  二項定理②

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式の展開式における[ ]に指定された項の係数は?

①$(2a+b-c)^6 [a^2bc^3]$

②$(3x-2y+4z)^4 [xy^2z]$

③$ (x^2+x-2)^4[x^5]$

④$(x^2-3x+\displaystyle \frac{2}{x})^4 [x^2]$
この動画を見る 

【高校数学】  数Ⅱ-3  二項定理①

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎二項定理を利用して展開しよう。

①$(a+b)^5$

②$(x+2)^6$

◎次の式の展開式における[ ]内に指定された項の係数は?

③$(2x+3)^6[x^2]$

④$(a-\displaystyle \frac{1}{2}b)^{10}[a^7 b^3]$
この動画を見る 

【高校数学】  数Ⅱ-2  パスカルの三角形

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$(a+b)^1$

$(a+b)^2$

$(a+b)^3$

$(a+b)^4$
これにより$(a+b)^4=$①________ということがわかる。
※図は動画内参照

◎パスカルの三角形を利用して、展開しよう。
②$(a+b)^5$

③$(x-1)^6$

④$(2x-1)^4$
この動画を見る 

【高校数学】  数Ⅱ-1 3次式の展開と因数分解

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$(a+b)^3=$①________,$a^3+b^3=$③________

$(a-b)^3=$②________,$a^3+b^3=$④________

◎展開(⑤・⑥)、因数分解(⑦・⑧)しよう・
⑤$(x-2)^3$

⑥$(-3x+y)^3$

⑦$x^3-64$

⑧$x^6-1$
この動画を見る 

【数学】数学の「応用問題」が解けるようになるために、京大合格者がやった唯一のこと~偏差値70の数学勉強法【篠原好】

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#その他#勉強法#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
まず前提として、数学の問題は5つに分けることができます。
① +・-・×・÷の計算問題
② 公式
③ 基礎パターン
④ 応用問題
⑤ 天才向け

1つ目が四則演算。足す、引く、掛ける、割るができたら解ける計算問題です。2つ目が、「お前、公式知ってる?」っていう問題。基礎パターンがしっかり分かっている人が取れる問題が3番になります。そして4つ目が応用問題。最後にレベル5として、天才向けの問題があります。これは、偏差値85ぐらいの人が解く問題ですので、応用問題まで解けるようになれば、東大や京大は受かります。

では、どうやったら数学の応用問題が解けるようになるのでしょうか。

分かっておいてほしいのが、応用問題は、基礎パターンの組合せであるということです。なので、もし応用問題ができないと悩んでいるのであれば、基礎パターンの復習をしてください。これが応用問題が解けるようになるコツです。

一番やってはいけないのが、応用問題の演習です。これは、既に基礎パターンが分かっていて応用問題が解ける人が、もっと点を取れるように使うものだからです。

応用問題は、基礎パターンの組合せだから、ここの理解をちゃんとしていけば、いずれ必ず解けるようになります。
この動画を見る 

【高校数学】「論理と集合」と「ベン図」をたぶん日本一わかりやすく解説した動画【篠原好】

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「論理と集合」について、わかりやすく解説しています。
この動画を見る 

【京大式】数学がニガテなら絶対に読んで欲しいこの本!和田秀樹さんの『数学は暗記だ!』【篠原好】

アイキャッチ画像
単元: #その他#勉強法#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「数学が苦手な人」にぜひ読んで欲しい本の紹介です。
この動画を見る 

【高校数学】  数Ⅰ-100  立体に内接する球

アイキャッチ画像
単元: #数Ⅰ#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎右図のように、高さ4、底面の半径$\sqrt{ 2 }$の円錐球Oと側面で接し、底面の中心Mでも接している。

①球Oの体積は?
②球Oの表面積は?
※図は動画内参照
この動画を見る 

【高校数学】  数Ⅰ-99  正四面体の切り口

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎1辺の長さが6の正四面体OABCがある。
OAの中点をL、辺OBを2:1に分ける点をM、辺OC上で2ON=NCを満たす点をNとする。

①$LM$の長さは?

②$\cos \angle MLN$の値は?

③$△LMN$の面積は?
この動画を見る 

【高校数学】  数Ⅰ-98  三角形の内角の二等分線

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$\angle A=60°, AB=4.AC=3$である△ABCの$\angle A$の二等分線が辺BCと交わる点をDとするとき、線分ADの長さを求めよう。
この動画を見る 

【高校数学】  数Ⅰ-97  内接円と外接円の半径

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎AB=7,BC=8,CA=5の△ABCについて。

①外接円の半径Rは?

②内接円の半径rは?
この動画を見る 

【高校数学】  数Ⅰ-96  円に内接する四角形

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎円に内接する四角形ABCDがあり、AB=3,BC=1,DA=4である。

①線分BDの長さは?

②四角形ABCDの面積は?
この動画を見る 

【高校数学】  数Ⅰ-95  多角形の面積

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次のような図形の面積Sを求めよう。
①$AB=5,BC=8,CD=4,\angle B=\angle C=60°$の四角形ABCD
②1辺の長さが2の正十二角形
この動画を見る 

【高校数学】  数Ⅰ-94  三角形の面積② ・ ヘロンの公式編

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
3辺の長さがa,b,cである△ABCの面積Sは、
S=①____________(t=②____________)

◎次のような△ABCの面積を求めよう。

③a=8,b=6,C=4

④a=7,b=5,C=9
この動画を見る 

【高校数学】  数Ⅰ-93  三角形の面積① ・ 基本編

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
三角形の面積S=①__________________
△ABCの内接円の半径rとするとS=②____________
※図は動画内参照

◎次の△ABCの面積Sを求めよう。

③$b=3,C=2,A=120°$

④$a=2\sqrt{ 2 },b=3,A110°,B=25°$

⑤$a=6,b=3,c=7$
この動画を見る 

【高校数学】  数Ⅰ-92  三角形となる条件

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎3辺の長さが、5,3,xである三角形が鈍角三角形となるように、xの範囲を定めよう。
この動画を見る 

【高校数学】  数Ⅰ-91  正弦定理と余弦定理④

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△ABCの辺BCの中点をM、線分BMの中点をDとする。
a=8,b=4,C=6のとき、次のものを求めよう。

①$\cos B$の値
②$AM$の長さ
③$AD$の長さ
※図は動画内参照
この動画を見る 

【高校数学】  数Ⅰ-90  正弦定理と余弦定理③

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△ABCにおいて、次が成り立つとき、この三角形の最も大きい角の余弦の値を求めよう。

①$\displaystyle \frac{a}{13}=\displaystyle \frac{b}{8}=\displaystyle \frac{c}{7}$

②$\sin A:\sin B:\sin C=5:4:6$
この動画を見る 

【高校数学】  数Ⅰ-89  正弦定理と余弦定理②

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△ABCにおいて、$a=2,b=\sqrt{ 6 },A=45°$のとき、
残りの底辺の長さと角の大きさを求めよう。
この動画を見る 

【高校数学】  数Ⅰ-88  正弦定理と余弦定理①

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△ABCにおいて、次のものを求めよ。
①$B=60°,C=75°,b=2\sqrt{ 6 }$のとき$a$

②$a=4,b=\sqrt{ 21 },C=5$のとき$B$

③$b=60°,a:b=1:3$のとき$\sin A$
この動画を見る 

【高校数学】  数Ⅰ-87  余弦定理

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
△ABCについて
①$a^2=$____
②$b^2=$____
③$c^2=$____
④$\cos A=$____
⑤$\cos B=$____
⑥$\cos C=$____
※図は動画内参照

◎△ABCにおいて、次のものを求めよう。
⑦$a=3,b=\sqrt{ 2 },C=45°$のとき $c$
⑧$b=7,c=5,B=60°$のとき$a$
この動画を見る 

【高校数学】  数Ⅰ-86  正弦定理

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
△ABCの外接円の半径をRとすると

①____=②____=③____=2R


◎△ABCにおいて、外接円の半径をRとするとき、次のものを求めよう。

④B=120°,R=4のとき b

⑤a=5$\sqrt{ 3 }$,R=5のとき A

⑥A=60°,C=75°,a=$2\sqrt{ 6 }$のとき Rとb

※図は動画内参照
この動画を見る 

【高校数学】  数Ⅰ-85  三角比⑩

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0° \leqq \theta \leqq 180°$であるとき、$y=\cos^2\theta-2\sin\theta-1$の最大値と最小値を求め、そのときの$\theta$も求めよう。
この動画を見る 
PAGE TOP