数学(高校生)
数学(高校生)
早稲田大 4次方程式

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数
$x^4+ax^3+(a+b)x^2+(2-a)x+1=0$
この方程式の解はすべて絶対値が1の複素数である。
$a,b$を求めよ
出典:2003年早稲田大学 過去問
この動画を見る
$a,b$は自然数
$x^4+ax^3+(a+b)x^2+(2-a)x+1=0$
この方程式の解はすべて絶対値が1の複素数である。
$a,b$を求めよ
出典:2003年早稲田大学 過去問
【数学III】関数の近似式を10分でマスターする

慶應(総合政策)絶対値のついた三次関数の最大最小

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+3x^2-2$
$|f(-x+2)|$の区間$1 \leqq x \leqq 5$における最大値、最小値を求めよ
出典:2003年慶應義塾大学 過去問
この動画を見る
$f(x)=x^3+3x^2-2$
$|f(-x+2)|$の区間$1 \leqq x \leqq 5$における最大値、最小値を求めよ
出典:2003年慶應義塾大学 過去問
東大 積分 ヨビノリたくみ

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$0 \leqq t \leqq 2,x^4-2x^2-1+t=0$の実数解のうち
最大のもの:$g_1(t)$
最小のもの:$g_2(t)$
$\displaystyle \int_{0}^{2} (g_1(t)-g_2(t)) dx$
出典:1993年東京大学 過去問
この動画を見る
$0 \leqq t \leqq 2,x^4-2x^2-1+t=0$の実数解のうち
最大のもの:$g_1(t)$
最小のもの:$g_2(t)$
$\displaystyle \int_{0}^{2} (g_1(t)-g_2(t)) dx$
出典:1993年東京大学 過去問
千葉大 三次関数と円 東大数学科卒の杉山さん

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#円と方程式#指数関数#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
曲線$y=x^3-x$と円$(x-a^2)+(y-a)^2=2a^2$の共有点が2つ
共有点の$x$座標は?
$(a \gt 0)$
出典:千葉大学 過去問
この動画を見る
曲線$y=x^3-x$と円$(x-a^2)+(y-a)^2=2a^2$の共有点が2つ
共有点の$x$座標は?
$(a \gt 0)$
出典:千葉大学 過去問
もっちゃんと学ぶ 対数 早稲田の過去問もやるよ

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
対数の解説動画です
$15^{50}=??$
出典:早稲田大学 過去問
この動画を見る
対数の解説動画です
$15^{50}=??$
出典:早稲田大学 過去問
【数学】教科書傍用問題集『4step』の効果的な使い方~全国模試1位の勉強法【篠原好】

単元:
#その他#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「数学の教科書傍用問題集『4step』の効果的な使い方」についてお話しています。
この動画を見る
「数学の教科書傍用問題集『4step』の効果的な使い方」についてお話しています。
三角比の値の範囲(数I)

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
次の値の範囲を求めよ。
(1)
$\sin\theta$ $0^{ \circ } \leqq \theta \leqq 180^{ \circ }$
(2)
$\cos\theta$ $0^{ \circ } \leqq \theta \leqq 180^{ \circ }$
(3)
$\tan\theta$ $0^{ \circ } \leqq \theta \lt 90^{ \circ }$
この動画を見る
次の値の範囲を求めよ。
(1)
$\sin\theta$ $0^{ \circ } \leqq \theta \leqq 180^{ \circ }$
(2)
$\cos\theta$ $0^{ \circ } \leqq \theta \leqq 180^{ \circ }$
(3)
$\tan\theta$ $0^{ \circ } \leqq \theta \lt 90^{ \circ }$
青山学院大 関数の最大値・最小値

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(x,y)$が次の式を満たすとき
$x^2+y^2-4x-4y+3=0$
$x+2y$の最大値と最小値を求めよ
出典:2003年青山学院大学 過去問
この動画を見る
$(x,y)$が次の式を満たすとき
$x^2+y^2-4x-4y+3=0$
$x+2y$の最大値と最小値を求めよ
出典:2003年青山学院大学 過去問
早稲田(政経)対数不等式

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \gt 0,a \neq 1$ 不等式を解け
$log_a(x+2) \geqq log_{a^2}(3x+16)$
出典:2003年早稲田大学 政治経済学部 過去問
この動画を見る
$a \gt 0,a \neq 1$ 不等式を解け
$log_a(x+2) \geqq log_{a^2}(3x+16)$
出典:2003年早稲田大学 政治経済学部 過去問
学習院大 三次関数と放物線の共通接線の本数

単元:
#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=x^3-x$と$y=x^2+a$の共通接線の数を求めよ
出典:2003年学習院大学 過去問
この動画を見る
$y=x^3-x$と$y=x^2+a$の共通接線の数を求めよ
出典:2003年学習院大学 過去問
ヘロンの公式とその証明(数1)

東京医科歯科大 整式の大小比較

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c$は異なる整数
大小比較せよ
(1)
$a^3+b^3,a^2b+ab^2$
(2)
$(a+b+c)(a^2+b^2+c^2)$
$(a+b+c)(ab+bc+ca)$
$3(a^3+b^3+c^3),9abc$
出典:2010年東京医科歯科大学 過去問
この動画を見る
$a,b,c$は異なる整数
大小比較せよ
(1)
$a^3+b^3,a^2b+ab^2$
(2)
$(a+b+c)(a^2+b^2+c^2)$
$(a+b+c)(ab+bc+ca)$
$3(a^3+b^3+c^3),9abc$
出典:2010年東京医科歯科大学 過去問
弘前大 整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
和が$406$で最小公倍数が$2660$である2つの自然数を求めよ
出典:2010年弘前大学 過去問
この動画を見る
和が$406$で最小公倍数が$2660$である2つの自然数を求めよ
出典:2010年弘前大学 過去問
サイン、コサイン、タンジェントの関係(数1)

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sin\theta,\cos\theta,\tan\theta$の相互関係についての解説動画です
この動画を見る
$\sin\theta,\cos\theta,\tan\theta$の相互関係についての解説動画です
数学オリンピック予選 整数問題

単元:
#数学検定・数学甲子園・数学オリンピック等#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$11^{12^{13}}$の十の位
$11$の$12^{13}$乗であり
$11^{12}$の$13$乗ではない
出典:2007年数学オリンピック 予選問題
この動画を見る
$11^{12^{13}}$の十の位
$11$の$12^{13}$乗であり
$11^{12}$の$13$乗ではない
出典:2007年数学オリンピック 予選問題
センター試験(追試)数列

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$C_1=2$
$C_{n+1}=-C_n+n^2+3$
(1)
$C_{25}-C_{23}$の値を求めよ。
(2)
$C_{25}$の値を求めよ。
出典:2004年センター試験 追試問題
この動画を見る
$C_1=2$
$C_{n+1}=-C_n+n^2+3$
(1)
$C_{25}-C_{23}$の値を求めよ。
(2)
$C_{25}$の値を求めよ。
出典:2004年センター試験 追試問題
名古屋市立大 積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^2$と$y=k$が動画内の図のように交わり$S_1+S_3=S_2$となる。
$k$の値を求めよ。
出典:2001年名古屋市立大学 過去問
この動画を見る
$f(x)=x^4-2x^2$と$y=k$が動画内の図のように交わり$S_1+S_3=S_2$となる。
$k$の値を求めよ。
出典:2001年名古屋市立大学 過去問
半角の公式を導く!!(数II)

3倍角の公式を導く!!(数II)

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sin3\alpha=\sin( + )$が$2\sin\alpha-4\sin^3\alpha$となることを証明せよ
$\cos3\alpha=\cos( + )$が$2\sin\alpha-4\sin^3\alpha$となることを証明せよ
この動画を見る
$\sin3\alpha=\sin( + )$が$2\sin\alpha-4\sin^3\alpha$となることを証明せよ
$\cos3\alpha=\cos( + )$が$2\sin\alpha-4\sin^3\alpha$となることを証明せよ
漸化式 数列

単元:
#数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_2=3$
$2S_n=(n+1)a_n-(n-1)$
{$a_n$}の一般項を求めよ
この動画を見る
$a_2=3$
$2S_n=(n+1)a_n-(n-1)$
{$a_n$}の一般項を求めよ
2倍角の公式を導く!!(数II)

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2倍角の公式の証明
以下を求めよ。
$\sin2\alpha=??$
$\cos2\alpha=??$
$\tan2\alpha=??$
この動画を見る
2倍角の公式の証明
以下を求めよ。
$\sin2\alpha=??$
$\cos2\alpha=??$
$\tan2\alpha=??$
南山大 指数方程式

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#南山大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$4^x+a・2^{x+1}+b=0$が異なる2つ負の解をもつための$a,b$の満たすべき条件を図示せよ
出典:南山大学 過去問
この動画を見る
$4^x+a・2^{x+1}+b=0$が異なる2つ負の解をもつための$a,b$の満たすべき条件を図示せよ
出典:南山大学 過去問
熊本大 関数の領域

単元:
#大学入試過去問(数学)#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \geqq x^2-1 \\
y \leqq x+1
\end{array}
\right.
\end{eqnarray}$
$(x,y)$がこの領域を動く
$x^2+y^2-4y$の最大値・最小値を求めよ。
出典:2001年熊本大学 過去問
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \geqq x^2-1 \\
y \leqq x+1
\end{array}
\right.
\end{eqnarray}$
$(x,y)$がこの領域を動く
$x^2+y^2-4y$の最大値・最小値を求めよ。
出典:2001年熊本大学 過去問
東京水産大 三次関数の共通接線

単元:
#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=x^3$と$y=(x+1)^3+k$の両方に接する直線が5本引けるような$k$の範囲を求めよ
出典:1994年東京海洋大学 過去問
この動画を見る
$y=x^3$と$y=(x+1)^3+k$の両方に接する直線が5本引けるような$k$の範囲を求めよ
出典:1994年東京海洋大学 過去問
数学オリンピック予選

単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1^{2001}+2^{2001}+3^{2001}+…+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ。
出典:2001年数学オリンピック 予選問題
この動画を見る
$1^{2001}+2^{2001}+3^{2001}+…+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ。
出典:2001年数学オリンピック 予選問題
円周角と中心角(中3数学)

数列・合同式 前橋工科大

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=1$ $a_n=3a_{n-1}+3^n$
(1)
$a_n$
(2)
$\displaystyle \sum_{k=1}^n a_k$
(3)
$a_n+n-2$は4つの倍数を示せ
出典:2000年前橋工科大学 過去問
この動画を見る
$a_1=1$ $a_n=3a_{n-1}+3^n$
(1)
$a_n$
(2)
$\displaystyle \sum_{k=1}^n a_k$
(3)
$a_n+n-2$は4つの倍数を示せ
出典:2000年前橋工科大学 過去問
【数学】フォーカスゴールドとチャート式、どう違う?どっち使う?~全国模試1位の勉強法【篠原好】

単元:
#その他#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「数学のフォーカスゴールドとチャート式、どっちを使うべきか?」についてお話しています。
この動画を見る
「数学のフォーカスゴールドとチャート式、どっちを使うべきか?」についてお話しています。
数学的帰納法(数B)

