数学(高校生) - 質問解決D.B.(データベース) - Page 5

数学(高校生)

【数Ⅲ】【積分とその応用】媒介変数表示の回転体の体積 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線x=tanθ、y=cos2θ(-π/4≦θ≦π/4)とx軸で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
この動画を見る 

【数Ⅲ】【積分とその応用】回転軸をまたぐ回転体の体積 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
(1)y=2-x²、y=x
(2)y=sinx、y=sin2x(π/3≦x≦π)
この動画を見る 

【解答速報・全問解説】2025年 神奈川大学給費生試験 数学(理系) 解答速報【マコちゃんねる】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)#大学入試解答速報#数学#神奈川大学
指導講師: 理数個別チャンネル
問題文全文(内容文):
著作権の関係で問題を映せないため、お手元に問題をご用意した上でご覧ください。

こちらの動画は、2024年12月22日(日)に実施された、2025年神奈川大学給費生試験の数学(文系)の解答速報です。

当チャンネルの講師が独自に解説をしているものですので、万が一内容に間違いがございましたらご容赦ください。

解説者は理数個別指導学院中山校のマコちゃんねる先生です。
https://www.youtube.com/playlist?list=PLdLgDY469Qr6v3hezRETVcwclXI1n9puZ
この動画を見る 

【数Ⅲ】【積分とその応用】y=1周りの回転体の体積 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、直線y=1の周りに1回転させてできる立体の体積Vを求めよ。

(1)$y=2\sin x$ $(0≦x≦π)$、$y=1$
(2)$x=\sqrt{x}$、$x=0$、$y=1 $




この動画を見る 

【数Ⅲ】【積分とその応用】y軸周りの回転体の体積3 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
y=log x、原点を通るこの曲線の接線、およびx軸で囲まれた部分を、y軸の周りに1回転させてできる立体の体積Vを求めよ
この動画を見る 

【数Ⅲ】【積分とその応用】y軸周りの回転体の体積2 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線y=cosx(0≦x≦π)とy軸、および直線y=−1で囲まれた部分を、y軸の周りに1回転 させてできる立体の体積Vを求めよ。
この動画を見る 

【数Ⅲ】【積分とその応用】y軸周りの回転体の体積1 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、y軸の周りに1回転させてできる立体の体積Vを求めよ。
(1)$y=x^2$, $x+\sqrt{y}=2$, $x=0$
(2)$y=x^2-4x+5$, $y=2x$
この動画を見る 

【数C】【平面上のベクトル】ベクトルと図形1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学C#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
$△ABC$の辺$AB$,$BC$,$CA$を2:1に内分する点を、それぞれ$A_1$,$B1_1$,$C_1$とする。更に、$△A_1B_1C_1$の辺$A_1B_1$,$B_1C_1$を2:1に内分する点を、それぞれ$A_2$,$B_2$とする。このとき、$A_2B_2//AB$であることを示せ。

問題2
△ABCにおいて、辺BCを2:1に外分する点をP,辺ABを1:2に内分する点をQ、辺CAの中点をRとする。
(1)3点P,Q,Rは一直線上にあることを証明せよ。
(2)QR:QPを求めよ。

問題3
平行四辺形ABCDにおいて、辺ABを3:2に内分する点をP、対角線BDを2:5に内分する点をQとする。
(1)3点P,Q,Cは一直線上にあることを証明せよ。
(2)PQ:QCを求めよ。

問題4
△ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD、BEの交点をPとする。$\overrightarrow{ AB }=\overrightarrow{ b }$,$\overrightarrow{ AC }=\overrightarrow{ c }$とするとき、$\overrightarrow{ AP }$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ。
この動画を見る 

【数Ⅲ】【積分とその応用】x軸周りの回転体の体積 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。

(1) $y=\dfrac{1}{\sqrt{1+x^2}}$, $y=\dfrac{1}{\sqrt{2}}$

(2)$y=x^2+3x-1$, $y=-x^2-x-1$
この動画を見る 

【数Ⅲ】【積分とその応用】断面積の図形の体積2 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
底面の半径が2、高さが4の直円柱がある。この底面の直径ABを含み、底面と60°の傾きをなす平面で、直円柱を2つの部分に分けるとき、小さい方の立体の体積Vを求めよ。
この動画を見る 

【数Ⅲ】【積分とその応用】断面積の図形の体積1 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面上の2点P(x,0)、Q(x, sinx)結ぶ線分を1辺とし、この平面に垂直な正方形を作る。Pが原点OからC(π,0)まで動くとき、この正方形が通過してできる立体の体積Vを求めよ。
この動画を見る 

【数Ⅰ】【2次関数】絶対値を含む関数のグラフ ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1)y=|2x+1|
(2)y=|x²+x|
(3)y=|x²-3x-4|

次の関数のグラフをかけ。
(1)y=x²-4|x|
(2)y=|x+1|(x-3)

次の関数のグラフをかけ。
(1)y=|x|+|x-1|
(2)y=|x+1|-|x-2|
この動画を見る 

【数Ⅰ】【2次関数】2次不等式応用4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次関数y=x²+mx+2が次の条件を満たすように、定数mの値の範囲を定めよ。
(1)この2次関数のグラフとx軸の正の部分が異なる2点で交わる。
(2)この2次関数のグラフとx軸のx<-1の部分が異なる2点で交わる。

放物線y=x²+2(m-1)x+5-m²がx軸の正の部分と負の部分のそれぞれと交わるように、定数mの値の範囲を定めよ。

2次方程式x²+2mx+2m+3=0が次のような実数解をもつように、定数mの値の範囲を定めよ。
(1)異なる2つの負の解
(2)-4より大きい異なる2つの解
この動画を見る 

【数Ⅰ】【2次関数】2次不等式応用3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の$x$についての不等式を解け。
(1)$x^2-(a+2)x+2a\lt 0$
(2)$x^2-(a-1)x-a\gt 0$
(3)$x^2-ax-2a^2\leqq 0$

不等式$x^2-(a+1)x+a\lt 0$を満たす整数$x$がちょうど2個だけ存在するように、定数$a$の値の範囲を定めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次不等式応用2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの放物線$y=x^2+mx+3m,y=x^2-mx+m^2-3$が、いずれも$x$軸と共有点をもたないとき、定数$m$の値の範囲を求めよ。

2つの2次方程式$x^2+mx+m=0$・・・・・・①、$x^2-2mx+m+6=0$・・・・・・②がある。次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)①、②がともに異なる2つの実数解をもつ。
(2)①、②がともに実数解をもたない。
(3)①、②の少なくとも一方が実数解をもつ。
(4) ①、②のうち一方だけが、異なる2つの実数解をもつ。
この動画を見る 

【数Ⅰ】【2次関数】2次不等式応用1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次不等式$ax^2+x+b\gt 0$の解が$x\lt -3,2\lt x$であるとき、定数$a,b$の値を求めよ。

$a,b$は定数とする。2次不等式$4x^2+ax+b\lt 0$の解が$1\lt x\lt \dfrac{5}{4}$であるとき、2次不等式$bx^2+ax+4\geqq 0$の解を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次不等式文章問題 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
立方体の縦を1cm短くし、横はそのまま、高さは2cm長くして直方体を作る。このとき、直方体の体積がもとの立方体の体積より大きくならないのは、もとの立方体の1辺の長さがどのような範囲にあるときか。

和が20である2つの整数の積が96以上になるとき、この2つの整数の組をすべて求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の文章題3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$AB=6\sqrt{3}、CA=9、∠C=90°$の三角形$ABC$がある。
点$P$は頂点$C$から$A$まで辺$CA$上を毎秒3の速さで進む。
点$Q$は$P$と同時に頂点$B$を出発し、頂点$C$まで辺$BC$上を毎秒$\sqrt{3}$の速さで進む。
この$P,Q$間の距離の最小値を求めよ。

この動画を見る 

【数Ⅰ】【2次関数】2次関数の文章題2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
点$P(t,t^2)$は放物線$y=x^2$上の点で、2点$A(-1,1)、B(4,16)$の間にある。このとき、三角形$APB$の面積の最大値を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の文章題1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
周囲の長さが24cmである長方形について、次の問いに答えよ。
(1) この長方形の面積の最大値を求めよ。また、そのとき、長方形はどのような形か。
(2) この長方形の対角線を1辺とする正方形の面積の最小値を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け11 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$f(x)=-x^2+2x+2(a\leqq x\leqq a+1)$の最大値を$M(a)$、最小値を$m(a)$とする。
(1)$M(a)$を求め、$b=M(a)$のグラフをかけ
(2)$m(a)$を求め、$b=m(a)$のグラフをかけ
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け10 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$は定数とする。関数$y=x^2-2x+1(a\leqq x\leqq a+1)$について
(1) 最小値を求めよ
(2) 最大値を求めよ
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け9 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$y=x^2-2x+m$の値が$0\leqq x\leqq 3$の範囲で常に負となるように、定数$m$の値の範囲を定めよ
この動画を見る 

【日本最速解答速報】2025年度東洋大学学校推薦型入試 基礎学力テスト型【数学】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大学入試解答速報#数学#東洋大学#東洋大学
指導講師: 理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2024年12月1日(日)に実施された、2025年度東洋大学 学校推薦型入試 基礎学力テスト型の数学の解答速報です。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け8 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a\gt 0$とする。関数$y=ax^2+2ax+b(-2\leqq x\leqq 1)$の最大値が6、最小値が3であるように、定数$a,b$の値を定めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け7 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$y=x^2-2ax-a(0\leqq x\leqq 2)$の最小値が$-2$であるように、定数$a$の値を定めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け6 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a\lt 0$とする。関数$y=-x^2+2ax+3a(0\leqq x\leqq 1)$の最小値が$-11$であるように、定数$a$の値を定めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け5 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$k$は定数とする。2次関数$y=x^2+2kx+k$の最小値を$m$とする。
(1) $m$は$k$の関数である。$m$を$k$の式で表せ。
(2) $k$の関数$m$の最大値とそのときの$k$の値を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$を定数とする。
2次関数$y=-x^2+2ax(0\leqq x\leqq 1)$の最大値を$M(a)$とするとき、次の問いに答えよ。
(1) $M(a)$を求めよ
(2) $b=M(a)$のグラフをかけ。
この動画を見る 

【数Ⅰ】【数と式】1次不等式の利用2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個800円の品物がある。入会金500円を払って会員になると、この品物を6%引きで買うことができる。入会して品物を買う場合、何個以上買えば入会しないで買うより安くなるか。ただし、消費税は考えないものとする。

13%と5%の食塩水を混ぜて400gの食塩水を作った。その濃度が10%以上であるとき、混ぜた5%の食塩水は何g以下か。

ある高等学校の1年全員が長いすに座っていくとき、1脚に6人ずつ座っていくと15人が座れなくなる。また、1脚に7人ずつ座っていくと、使わない長いすが3脚できる。長いすの数は何脚以上何脚以下か。
この動画を見る 
PAGE TOP