数学(高校生) - 質問解決D.B.(データベース) - Page 5

数学(高校生)

福田のおもしろ数学577〜条件付きの最大を求める

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$2x^2+3y^2+4z^2=1$のとき

$5x-6y+7z$の最大値と

そのときの$x,y,z$を求めよ。
    
この動画を見る 

福田の数学〜青山学院大学2025理工学部第3問〜三角関数のグラフと面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$f(x)=\cos^3 x+\sin^3 x,g(x)=\sin x$とする。

(1)$0\leqq x \leqq \pi$において、

曲線$y=f(x)$の概形を描け。

ただし、凹凸は調べなくてよい。

(2)$0\leqq x \leqq \pi$において、

$2$曲線$y=f(x),y=g(x)$の共有点の座標を求めよ。

(3)$0\leqq x \leqq \pi$において、

$2$曲線$y=f(x),y=g(x)$で囲まれた図形の

面積$S$を求めよ。

$2025$年青山学院大学理工学部過去問題
この動画を見る 

【数C】【空間ベクトル】四面体ABCDにおいて、辺AB,CB,AD,CDを1:2に内分する点を,それぞれP,Q,R,Sとするとき,四角形PQRSは平行四辺形であることを示せ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCDにおいて、辺AB,CB,AD,CDを1:2に内分する点を,それぞれP,Q,R,Sとするとき,四角形PQRSは平行四辺形であることを示せ。
この動画を見る 

【高校数学】漸化式~基本を丁寧に~ 3-14【数学B】

アイキャッチ画像
単元: #数列#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
漸化式:数列において、その前の項から次の項をただ1通りに定める規則を示す等式
数列{an}が次の2つの条件を満たしているとする。第3項を求めよ。
a1=1, an+1=an+n

次のように定義される数列{an}の初項から第5項までを書け。

この動画を見る 

福田のおもしろ数学576〜累乗根の大小比較

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a\gt 0,b \gt 0$のとき

$\dfrac{a+b}{2},\sqrt{\dfrac{a^2+b^2}{2}},\sqrt[3]{\dfrac{a^3+b^3}{2}}$

の大小を比較せよ。
    
この動画を見る 

福田の数学〜青山学院大学2025理工学部第2問〜虚数係数の2次方程式の解と正方形の頂点

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$i$を虚数単位とする。

複素数$z$についての方程式

$z^2-4iz=4\sqrt3 i \ \cdots (*)$

の$2$つの解を$\alpha,\beta(\vert \alpha \vert \lt \vert \beta \vert )$とし、

$\alpha,\beta$が表す複素数平面上の点を

それぞれ$A,B$とする。

(1)方程式$(*)$は

$(z-\boxed{ア}i)^2=\boxed{イ} \left(\cos \dfrac{\boxed{ウ}}{\boxed{エ}}\pi+i\sin\dfrac{\boxed{ウ}}{\boxed{エ}}\pi\right) \qquad \left(0\leqq \dfrac{\boxed{ウ}}{\boxed{エ}}\pi \lt 2\pi \right)$

と表せるので

$\alpha=-\sqrt{\boxed{オ}}+\left(\boxed{カ}-\sqrt{\boxed{キ}}\right)i$である。

(2)線分$AB$の長さは$\boxed{ク}\sqrt{\boxed{ケ}}$である。

また、線分$AB$を対角線とする正方形の

残りの$2$頂点を表す複素数は

$-\sqrt{\boxed{コ}}+\left(\boxed{サ}+\sqrt{\boxed{シ}}\right)i$と

$\sqrt{\boxed{コ}}-\left(\boxed{サ}+\sqrt{\boxed{シ}}\right)i$である。

$2025$年青山学院大学理工学部過去問題
この動画を見る 

福田のおもしろ数学575〜3乗根のついた2重根号の計算

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\sqrt[3]{20+14\sqrt2}+\sqrt[3]{20-14\sqrt2}$

を簡単にして下さい。
    
この動画を見る 

福田の数学〜青山学院大学2025理工学部第1問〜さいころの目によって平面上を動く点に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$1$個のさいころを$4$回続けて投げる

反復試行において、

さいころの出る目を順に$X_1,X_2,X_3,X_4$として、

$xy$平面上の$4$点$P_1,P_2,P_3,P_4$を

以下のように定める。

$1$.原点$O$から$x$軸の正の向きに$X_1$だけ進んだ位置に

ある点を$P_1$とする。

$2$.$P_1$から$y$軸の正の向きに$X_2$だけ進んだ位置に

ある点を$P_2$とする。

$3$.$P_2$から$x$軸の負の向きに$X_3$だけ進んだ位置に

ある点を$P_3$とする。

$4$.$P_3$から$y$軸の負の向きに$X_4$だけ進んだ位置に

ある点を$P_4$とする。

例えば、さいころの出た目が順に$3,2,5,5$ならば

$P_1,P_2,P_3,P_4$の座標はそれぞれ

$(3,0),(3,2),(-2,2),(-2,-3)$となる。

(1)$P_4$が$O$と一致する確率は$\dfrac{\boxed{ア}}{\boxed{イウ}}$である。

(2)線分$OP_1$と線分$P_3P_4$が共有点をもつ確率は

$\dfrac{\boxed{エオ}}{\boxed{カキク}}$である。

ただし、線分は両方の端点を含むものとする。

(3)$P_4$の座標が$(3,3)$である確率は

$\dfrac{\boxed{ケ}}{\boxed{コサシ}}$である。
    
この動画を見る 

【数Ⅲ】【積分とその応用】区間a≦x≦bでf(x)≧0曲線y=f(x)とx軸および2直線x=a,x=bで囲まれy軸の周りに1回転させてできる体積は2π∫[a→b]xf(x)dxで与えられることを示せ。

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) 0≦a<bとする。関数f(x)を区間a≦x≦bで単調に増加する関数とし、
区間a≦x≦bでf(x)≧0とする。曲線y=f(x)とx軸および2直線x=a,x=bで囲まれた部分を、
y軸の周りに1回転させてできる立体の体積Vは
$V=2\pi\int_a^bxf(x)dx$……①で与えられることを示せ。

(2) (1)の①は、一般の関数f(x) (ただし、a≦x≦bでf(x)≧0)についても成り立つ。
これを利用して、曲線y=-x²+2xとx軸で囲まれた部分を、
y軸の周りに1回転させてできる立体の体積を求めよ。
この動画を見る 

福田のおもしろ数学574〜sin(x)がxのn次多項式で表せるか

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\sin x$は

$x$の$n$次の多項式で表せるだろうか?
    
この動画を見る 

福田の数学〜早稲田大学2025商学部第3問〜三角形を一辺を軸として回転させたときの回転体の体積の最大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

空間内の異なる$4$点

$A,B,C,D$が$AD=BC=2$、

$AB=CD=1$を満たし、線分$AD$と線分$BC$が

点$P$のみで交わり、$P$は$AD$と$BC$をそれぞれ

$AP:PD=s:(1-s),$

$BP:PC=t:(1-t) \ (0\lt s \lt t,0\lt t \lt 1)$

に内分しているとする。次の問いに答えよ。

(1)$s$を$t$を用いて表せ。

(2)$t$のとりうる値の範囲を求めよ。

(3)線分$BC$を軸にして$\triangle ABP$を$1$回転させるとき、

$\triangle ABP$の辺と内部が通過する部分の体積を

$V$とする。$V$の最大値を求めよ。

$2025$年早稲田大学商学部過去問題
この動画を見る 

福田の数学〜千葉大学2024年理系第8問〜4つの円の位置関係と極限

アイキャッチ画像
単元: #数A#図形の性質#関数と極限#数列の極限#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
図は動画参照

半径$1$、中心$O$の円$C$がある。2つの円$C_1$と$C_2$が次の2つの条件を満たすとする。

・$C_1$と$C_2$はどちらも$C$に内接する。
・$C_1$と$C_2$は互いに外接する。

円$C_1,\ C_2$の中心をそれぞれ$D,\ E$とし、半径をそれぞれ$p,\ q$とする。$\theta= \angle{DOE}$とおく。

(1) $q$を$p$と$\theta$を用いて表せ。

(2) $p$を固定する。$\theta$が$0$に近づくとき、$\dfrac{q}{theta^2}$の極限値を求めよ。

(3) $p= \sqrt{2}-1$のとき、$q$の値を求めよ。

(4) $\theta$が$0$に近づくとき、$\dfrac{q}{p}$の極限値を求めよ。
この動画を見る 

福田のおもしろ数学573〜4次方程式の解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a,b,c,d$は実数であり$4$次方程式

$x^4+ax^3+bx^2+cx+d=0$

のすべての解が正の実数であるとき

$(b-a-c)^2 \geqq kd$

が常に成り立つ最大の$k$を求めよ。

また等号が成り立つのはどんなときか?
     
この動画を見る 

福田の数学〜早稲田大学2025商学部第2問〜x軸に関する対称移動とy=√3xに関する対称移動の組合せで決まる点列

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$a,b$を実数とする。

座標平面上の点$P_1,P_2,P_3,\cdots $は

以下の条件を満たしている。

すべての正の奇数$n$に対して、$P_n$と$P_{n+1}$は

$x$軸に関して対称な位置にある。

ただし、$P_n$が$x$軸上にあるときは$P_n=P_{n+1}$で

あるとする。

また、すべての正の偶数$n$に対して、

$P_n$と$P_{n+1}$は直線$y=ax+b$に関して対称な

位置にある。

ただし、$P_n$が直線$y=ax+b$上にあるときは

$P_n=P_{n+1}$であるとする。

(1)$a=0,b=1,P_1(0,0)$であるとき、

$P_{2025}$の座標を求めよ。

(2)$a=1,b=0,P_1(2,1)$であるとき、

$P_{2025}$の座標を求めよ。

(3)$a=\sqrt3,b=0,P_1(1,1)$であるとする。

$m,n$を正の整数とする。

$P_m$と$P_n$の距離の最大値を求めよ。

$2025$年早稲田大学商学部過去問題
この動画を見る 

福田のおもしろ数学572〜対称式に関する等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$x+y+z=0$のとき次を証明して下さい。

$\dfrac{x^2+y^2+z^2}{2} \times \dfrac{x^5+y^5+z^5}{5}=\dfrac{x^7+y^7+z^7}{7}$
    
この動画を見る 

福田の数学〜早稲田大学2025商学部第1問(4)〜正九角形の頂点を結んでできる正三角形の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#図形の性質#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)$P$を平面上の正九角形とする。

$P$の異なる$2$つの頂点を通る直線をすべて考える。

これら$36$本の直線のうちの$3$本により平面上で

囲まれてできる正三角形の総数は$\boxed{エ}$である。

ただし、互いに合同でも位置の異なるものは

異なる三角形として数える。

$2025$年早稲田大学商学部過去問題
この動画を見る 

【数Ⅲ】【積分とその応用】曲線y=e^{-x}上でx座標がnの点をP_nとし、線分P_{n-1}P_nと曲線y=e^{-x}で囲まれた部分の面積をS_nとするとき、次の無限級数の和を求めよ。

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$y=e^{-x}$上で$x$座標が$n$の点を$P_n$とし、
線分$P_{n-1}P_n$と曲線$y=e^{-x}$で囲まれた部分の面積を$S_n$とするとき、
次の無限級数の和を求めよ。
$S=S_1+S_2+S_3+\cdots\cdots+S_n+\cdots\cdots$
この動画を見る 

福田のおもしろ数学571〜漸化式で定まった数列の項に関する等式の証明

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$a_0=1,a_1=3,a_{n+1}=\dfrac{{a_n}^2+1}{2} \ (n\geqq 1)$のとき

$\dfrac{1}{a_0+1}+\dfrac{1}{a_1+1}+\cdots +\dfrac{1}{a_n+1}+\dfrac{1}{a_{n+1}-1}=1$

を示せ。
    
この動画を見る 

福田の数学〜早稲田大学2025商学部第1問(3)〜定積分で表された関数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)$m,n$を正の整数とする。

$n$次関数$f(x)$が次の等式を満たしているとき、

$f(x)=\boxed{ウ}$である。

$\displaystyle \int_{0}^{x} {f(t)}^{m-1} dt=(2x)^m f(x)$ 

$2025$年早稲田大学商学部過去問題
この動画を見る 

【数C】【空間ベクトル】a,b,cに対して、|a|=6,|c|=1,aとbのなす角は60°またaとc,bとc,a+b+cと2a-5bのなす角はいずれも90°である。この時|b|,|a+b+c|を求めよ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間の3つのベクトルa,b,cに対して、|a|=6,|c|=1,aとbのなす角は60°,またaとc,bとc,a+b+cと2a-5bのなす角は,いずれも90°である。この時、|b|,|a+b+c|を求めよ。
この動画を見る 

福田のおもしろ数学570〜無理式のシグマ計算

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\displaystyle \sum_{n=1}^{49} \dfrac{1}{\sqrt{n+\sqrt{n^2-1}}}$を求めて下さい。
  
この動画を見る 

【数式に翻訳せよ…!】整数:新潟県~全国入試問題解法

単元: #数学(中学生)#整数の性質#高校入試過去問(数学)#新潟県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ある連続する自然数n,mについて、以下が成立するとき(n,m)を求めよ$
$n*m+55=n+m$
この動画を見る 

福田の数学〜早稲田大学2025商学部第1問(2)〜3項間漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)数列$\{a_n\}$が次の条件を満たしている。

$a_1=a_{2025}=0,a_{n+1}-2a_n+a_{n-1}=-1 \ (n=2,3,4,\cdots)$

このとき、一般項$a_n$は$a_n=\boxed{イ}$である。

$2025$年早稲田大学商学部過去問題
この動画を見る 

福田のおもしろ数学569〜奇数回握手をした人の人数は偶数か

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

すべての人が何人かの人と握手したとする。

このとき「奇数回握手をした人」を数えると

その人数は必ず偶数になることを

証明してください。
    
この動画を見る 

福田の数学〜早稲田大学2025商学部第1問(1)〜方程式の実数解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)正の実数$a$に対して、円$x^2+(y-a)^2=a^2$と

曲線$y=x^3$がちょうど$2$つの共有点をもつとき、

$a=\boxed{ア}$である。

$2025$年早稲田大学商学部過去問
この動画を見る 

福田のおもしろ数学568〜平面上の任意の点が2つの有理点を結んだ直線上にあるか

アイキャッチ画像
単元: #平面上のベクトル#平面上の曲線#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$x,y$座標がともに有理数である平面上の点を

有理点と呼ぶ。

平面上のすべての点は$2$つの有理点で定める

直線上に必ず存在するだろうか?
    
この動画を見る 

福田の数学〜早稲田大学2025教育学部第4問〜共有点の個数と面積計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$k$は実数とする。

曲線$C:y=(x^3-x+2)e^{-x}$と直線$y=k$との

共有点の偶数を$f(k)$で表す。次の問いに答えよ。

ただし、必要ならば自然数$n$に対し

$\displaystyle \lim_{x\to\infty} x^n e^{-x}=0$が成り立つことは

説明なしに用いてもよい。

(1)$k$が実数全体を動くとき、

$f(k)$の最大値の最小値を求めよ。

(2)$f(k)=2$を満たす$k$の値の範囲を求めよ。

(3)$\alpha$を正の実数とする。

曲線$C,x$軸,$y$軸,および直線$x=\alpha$で囲まれる

部分の面積を$\alpha$を用いて表せ。

$2025$年早稲田大学教育学部過去問題
この動画を見る 

【数C】【空間ベクトル】大きさが2で,x軸の正の向きとなす角が45°、y軸の正の向きとなす角が60°であるような空間ベクトルを成分表示せよ。また,そのベクトルがz軸の正の向きとなす角は何度か。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
大きさが2で,x軸の正の向きとなす角が45°、y軸の正の向きとなす角が60°であるような空間ベクトルを成分表示せよ。また,そのベクトルがz軸の正の向きとなす角は何度か。
この動画を見る 

福田のおもしろ数学567〜3変数の不定方程式の整数解

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$3+x+y+z=xyz$

を満たす正の整数の組$(x,y,z)$を

すべて求めて下さい。
   
この動画を見る 

福田の数学〜早稲田大学2025教育学部第3問〜楕円と接線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

座標平面上で、

点$H(0,2\sqrt2)$から楕円$C:x^2+2y^2=8$へ引いた

$2$つの接線を$L_1,L_2$とし、$L_1,L_2$と$C$との

共有点をそれぞれ$P_1,P_2$とする。

ただし、$P_1$の$x$座標は正であるとする。

次の問いに答えよ。

(1)直線$L_1$と$L_2$それぞれの傾きを求めよ。

(2)$2$点$P_1,P_2$を通る直線を$L_3$とする。

直線$L_3$と楕円$C$で囲まれた$2$つの部分のうち、

直線$L_3$の上側にある方の面積を求めよ。

$2025$年早稲田大学教育学部過去問題
この動画を見る 
PAGE TOP