連立方程式
【数学】中2-23 連立方程式の利用④ 割合の基本編
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
割合の問題は①______を書こう!
あと、②______を$X・Y$とおこうね。
③とある中学校の$2$年生の生徒数は男女 あわせて$310$人。
そのうち男子の$15%$と 女子の$22$%がペットを飼っていて、その人数は$57$人です。
男子と好それぞれの生徒数は?
④とある中学校の昨年の生徒数は男女あわせて$410$人。
今年は、昨年とくらべて 男子は$5$%増えて、女子は$10%$減ったので、全体では$11人$減った。
今年の男子と 女子それぞれの生徒数は?
この動画を見る
割合の問題は①______を書こう!
あと、②______を$X・Y$とおこうね。
③とある中学校の$2$年生の生徒数は男女 あわせて$310$人。
そのうち男子の$15%$と 女子の$22$%がペットを飼っていて、その人数は$57$人です。
男子と好それぞれの生徒数は?
④とある中学校の昨年の生徒数は男女あわせて$410$人。
今年は、昨年とくらべて 男子は$5$%増えて、女子は$10%$減ったので、全体では$11人$減った。
今年の男子と 女子それぞれの生徒数は?
【数学】中2-22 連立方程式の利用③ みはじの応用編
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①みかさんは家から$12km$離れた駅まで行った。
はじめは自転車に乗って時速$18km$で走っていたんだけど、
途中で友達と会ったので時速$4km$で一緒に歩いていったら、全部で$1$時間$15$分かかった。
自転車で走った道のりと歩いた道のりはそれぞれ$何km?$
②周りの道のりが$1.5km$の池のまわりを$A、B$の$2$人が走る。
同時に同じ 場所をスタートして、反対方向に走ると $5$分後に出会い、同じ方向に走ると$30$分後に$A$が$B$に追いつく。
$A、B$それぞれの分速は?
この動画を見る
①みかさんは家から$12km$離れた駅まで行った。
はじめは自転車に乗って時速$18km$で走っていたんだけど、
途中で友達と会ったので時速$4km$で一緒に歩いていったら、全部で$1$時間$15$分かかった。
自転車で走った道のりと歩いた道のりはそれぞれ$何km?$
②周りの道のりが$1.5km$の池のまわりを$A、B$の$2$人が走る。
同時に同じ 場所をスタートして、反対方向に走ると $5$分後に出会い、同じ方向に走ると$30$分後に$A$が$B$に追いつく。
$A、B$それぞれの分速は?
【数学】中2-21 連立方程式の利用② みはじの基本編
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
できるのは①____、②____。
あと、みはじは③____の罠が 多いから注意してね!!
例えば・・・
$3km=$④____ $m$
$40$分= ⑤____ 時間
$1$時間$44$分=⑥____ 時間
⑦ りょう君は、家から$2.4km$離れた友達の家まで
行くのに途中の公園までは分速$90m$で歩き、
公園からは分速$120m$で走っていったら$25分$かかった。
歩いた時間と走った時間は何分?
この動画を見る
できるのは①____、②____。
あと、みはじは③____の罠が 多いから注意してね!!
例えば・・・
$3km=$④____ $m$
$40$分= ⑤____ 時間
$1$時間$44$分=⑥____ 時間
⑦ りょう君は、家から$2.4km$離れた友達の家まで
行くのに途中の公園までは分速$90m$で歩き、
公園からは分速$120m$で走っていったら$25分$かかった。
歩いた時間と走った時間は何分?
【数学】中2-20 連立方程式の利用① お金編
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①________を$X,y$とおいて
2つの式を作ろう!!
②$1$個$80$円のみかんと$1$個$130$円のりんごを
あわせて$10$個買うと$950$円でした。
みかんとりんごの買った数はそれぞれいくつ?
③とあるテーマパークに行ったら、おとな$2$人と子ども$3$人で$11800$円、 おとな$1$人と子ども$2$人で$6800$円でした。
おとな$1$人分と子ども$1$人分の入場料は それぞれいくら?
④なし$4$個とすいか$1$個を買うと$1070$円、
なし$3$個とすいか$2$個を買うと$1590$円になる。
なし$1$個とすいか$1$個の値段はそれぞれいくら?
この動画を見る
①________を$X,y$とおいて
2つの式を作ろう!!
②$1$個$80$円のみかんと$1$個$130$円のりんごを
あわせて$10$個買うと$950$円でした。
みかんとりんごの買った数はそれぞれいくつ?
③とあるテーマパークに行ったら、おとな$2$人と子ども$3$人で$11800$円、 おとな$1$人と子ども$2$人で$6800$円でした。
おとな$1$人分と子ども$1$人分の入場料は それぞれいくら?
④なし$4$個とすいか$1$個を買うと$1070$円、
なし$3$個とすいか$2$個を買うと$1590$円になる。
なし$1$個とすいか$1$個の値段はそれぞれいくら?
【数学】中2-19 ややこしい連立方程式②
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$5x+=-x+7y=19$
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
0.2x-0.03y=0.08 \\
\displaystyle \frac{2}{3}x+\displaystyle \frac{y}{2}=\displaystyle \frac{8}{3}
\end{array}
\right.
\end{eqnarray}$
③
次の$2$組の$x,y$についての連立方程式が同じ解をもつとき、
$a,b$の値は?
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-2y=-11 \\
-3x+2y=a
\end{array}
\right.
\end{eqnarray}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
bx+2y=b \\
x-4y=5
\end{array}
\right.
\end{eqnarray}$
この動画を見る
①$5x+=-x+7y=19$
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
0.2x-0.03y=0.08 \\
\displaystyle \frac{2}{3}x+\displaystyle \frac{y}{2}=\displaystyle \frac{8}{3}
\end{array}
\right.
\end{eqnarray}$
③
次の$2$組の$x,y$についての連立方程式が同じ解をもつとき、
$a,b$の値は?
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-2y=-11 \\
-3x+2y=a
\end{array}
\right.
\end{eqnarray}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
bx+2y=b \\
x-4y=5
\end{array}
\right.
\end{eqnarray}$
再撮影しましたので、概要欄のリンクからお願いします!
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
( )も分数も少数も全部消してやるぜ!
①
$\begin{eqnarray}
\left\{
\begin{array}{l}
3(x+y)=4x-7 \\
2x=3y+8
\end{array}
\right.
\end{eqnarray}$
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
0.5x-0.2y=2 \\
2x-3y=-3
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{x}{3}=+\displaystyle \frac{y}{4}=-1 \\
3y=5x-9
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
2(3x+y)=8x+y+9 \\
5x-4y+30=0
\end{array}
\right.
\end{eqnarray}$
この動画を見る
( )も分数も少数も全部消してやるぜ!
①
$\begin{eqnarray}
\left\{
\begin{array}{l}
3(x+y)=4x-7 \\
2x=3y+8
\end{array}
\right.
\end{eqnarray}$
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
0.5x-0.2y=2 \\
2x-3y=-3
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{x}{3}=+\displaystyle \frac{y}{4}=-1 \\
3y=5x-9
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
2(3x+y)=8x+y+9 \\
5x-4y+30=0
\end{array}
\right.
\end{eqnarray}$
【数学】中2-16 連立方程式③ 加減法の応用編
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
係数が揃っていないなら①____算使って揃えちゃえばいい!
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+2y=3 \\
2x-3y=-22
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x-2y=-8 \\
7x+4y=-10
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=3 \\
3x+5y=7
\end{array}
\right.
\end{eqnarray}$
⑤
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=-19 \\
5x+4y=10
\end{array}
\right.
\end{eqnarray}$
この動画を見る
係数が揃っていないなら①____算使って揃えちゃえばいい!
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+2y=3 \\
2x-3y=-22
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x-2y=-8 \\
7x+4y=-10
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=3 \\
3x+5y=7
\end{array}
\right.
\end{eqnarray}$
⑤
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=-19 \\
5x+4y=10
\end{array}
\right.
\end{eqnarray}$
【数学】中2-17 連立方程式④ 代入法編
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
どちらかの式の左辺を①____としよう!
【代入法で解いてね!】
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=y+1 \\
3x-2y=5
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=4 \\
y=3x-5
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=-1 \\
-2x+5y=-13
\end{array}
\right.
\end{eqnarray}$
⑤
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x=3y-7 \\
4x-7y=-17
\end{array}
\right.
\end{eqnarray}$
この動画を見る
どちらかの式の左辺を①____としよう!
【代入法で解いてね!】
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=y+1 \\
3x-2y=5
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=4 \\
y=3x-5
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=-1 \\
-2x+5y=-13
\end{array}
\right.
\end{eqnarray}$
⑤
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x=3y-7 \\
4x-7y=-17
\end{array}
\right.
\end{eqnarray}$
【数学】中2-15 連立方程式② 加減法の基本編
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
2つの文字で①____が揃っているほうが消えるように
(+)か(ー)を選ぼう!
◎加減法で解こう!!
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=2 \\
2x-y=7
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=-1 \\
3x+2y=1
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x+3y=13 \\
x+3y=1
\end{array}
\right.
\end{eqnarray}$
⑤
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x+2y=4 \\
5x-2y=16
\end{array}
\right.
\end{eqnarray}$
この動画を見る
2つの文字で①____が揃っているほうが消えるように
(+)か(ー)を選ぼう!
◎加減法で解こう!!
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=2 \\
2x-y=7
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=-1 \\
3x+2y=1
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x+3y=13 \\
x+3y=1
\end{array}
\right.
\end{eqnarray}$
⑤
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x+2y=4 \\
5x-2y=16
\end{array}
\right.
\end{eqnarray}$
【数学】中2-14 連立方程式① 準備編
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$x+y=15$のように、2つの文字を ふくむ一次方程式を
①________という。
そして・・・ $\begin{eqnarray}
\left\{
\begin{array}{l}
2x+y=15 \\
2x+y=9
\end{array}
\right.
\end{eqnarray}$ みたいに
2つの方程式を組にしたものを、 ②________っていって、
これを計算して でた、どちらにもあてはまる文字の値の
組を③________っていうんだ!
㋐
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
2x-y=8
\end{array}
\right.
\end{eqnarray}$
㋑
$\begin{eqnarray}
\left\{
\begin{array}{l}
x-y=1 \\
x+2y=-1
\end{array}
\right.
\end{eqnarray}$
㋒
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=7 \\
-x+y=-6
\end{array}
\right.
\end{eqnarray}$
㋓
$\begin{eqnarray}
\left\{
\begin{array}{l}
-2x+y=-4 \\
x-3y=9
\end{array}
\right.
\end{eqnarray}$
④㋐~㋓の中で$(3,-2)$が解に
なるすべてを選ぼう!
この動画を見る
$x+y=15$のように、2つの文字を ふくむ一次方程式を
①________という。
そして・・・ $\begin{eqnarray}
\left\{
\begin{array}{l}
2x+y=15 \\
2x+y=9
\end{array}
\right.
\end{eqnarray}$ みたいに
2つの方程式を組にしたものを、 ②________っていって、
これを計算して でた、どちらにもあてはまる文字の値の
組を③________っていうんだ!
㋐
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
2x-y=8
\end{array}
\right.
\end{eqnarray}$
㋑
$\begin{eqnarray}
\left\{
\begin{array}{l}
x-y=1 \\
x+2y=-1
\end{array}
\right.
\end{eqnarray}$
㋒
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=7 \\
-x+y=-6
\end{array}
\right.
\end{eqnarray}$
㋓
$\begin{eqnarray}
\left\{
\begin{array}{l}
-2x+y=-4 \\
x-3y=9
\end{array}
\right.
\end{eqnarray}$
④㋐~㋓の中で$(3,-2)$が解に
なるすべてを選ぼう!
【For you 動画-8】 中2-連立方程式の利用
単元:
#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
中2の連立方程式を利用し答えよ。
①一の位と百の位が等しい3けたの自然数がある。
この数の各位の数字の和は$13$で、 百の位と十の位の数字を入れかえてできる数は、
もとの数より$180$小さくなる。
もとの自然数は?
②ある学校の去年の入学者数は全体で $320$人でした。
今年は男子が$15%$増えて、 女子が$6%$減ったので、入学者数は 全体で$6$人増えた。
今年の男子と女子の入学者数は?
この動画を見る
中2の連立方程式を利用し答えよ。
①一の位と百の位が等しい3けたの自然数がある。
この数の各位の数字の和は$13$で、 百の位と十の位の数字を入れかえてできる数は、
もとの数より$180$小さくなる。
もとの自然数は?
②ある学校の去年の入学者数は全体で $320$人でした。
今年は男子が$15%$増えて、 女子が$6%$減ったので、入学者数は 全体で$6$人増えた。
今年の男子と女子の入学者数は?
【中2 数学】 中2-22 連立方程式の利用 (食塩水)
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
濃度(%)=$\displaystyle \frac{食塩}{食塩水} \times 100$
①190gの水に10gの食塩をとかしたとき、
食塩水の濃度は?
②7%の食塩水300gにとけている食塩は?
③ 8%と15%の食塩水をまぜて、 10%の食塩水を700g作ります。それぞれ?
この動画を見る
濃度(%)=$\displaystyle \frac{食塩}{食塩水} \times 100$
①190gの水に10gの食塩をとかしたとき、
食塩水の濃度は?
②7%の食塩水300gにとけている食塩は?
③ 8%と15%の食塩水をまぜて、 10%の食塩水を700g作ります。それぞれ?
【中2 数学】 2-③⑤ 二元一次方程式
単元:
#数学(中学生)#中2数学#連立方程式#1次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
中2 数学 二元一次方程式
次の問に答えよ
① $3x - 4y = 12$
② $4y -12 = 0$
③ $5x + 20 = 0$
※図は動画内参照
この動画を見る
中2 数学 二元一次方程式
次の問に答えよ
① $3x - 4y = 12$
② $4y -12 = 0$
③ $5x + 20 = 0$
※図は動画内参照
【中2 数学】 2-②③ 連立方程式の利用(橋とトンネル)
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
中2 数学 連立方程式の利用(橋とトンネル)
以下の問に答えよ
ある列車が、
$1260$ mの橋を渡り始めてから
渡り終わるまでに $60$ 秒かかりました。
同じ列車が、$2010$ mのトンネルに
はいり始めてから、出てしまうまでに
$90$ 秒かかりりました。
列車の長さと時速は?
※図は動画内参照
この動画を見る
中2 数学 連立方程式の利用(橋とトンネル)
以下の問に答えよ
ある列車が、
$1260$ mの橋を渡り始めてから
渡り終わるまでに $60$ 秒かかりました。
同じ列車が、$2010$ mのトンネルに
はいり始めてから、出てしまうまでに
$90$ 秒かかりりました。
列車の長さと時速は?
※図は動画内参照
【中2 数学】 2-②② 連立方程式の利用(食塩水)
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
中2 数学 連立方程式の利用(食塩水)
次の問に答えよ
① $190$ gの水に $10$ gの食塩をとかしたとき、食塩水の濃度は?
② $7$ %の食塩水 $300$ gにとけている食塩は?
③ $8$ %と $15$ %の食塩水をまぜて、$10$ %の食塩水を $700$ g作ります。
それぞれ何g必要か?
この動画を見る
中2 数学 連立方程式の利用(食塩水)
次の問に答えよ
① $190$ gの水に $10$ gの食塩をとかしたとき、食塩水の濃度は?
② $7$ %の食塩水 $300$ gにとけている食塩は?
③ $8$ %と $15$ %の食塩水をまぜて、$10$ %の食塩水を $700$ g作ります。
それぞれ何g必要か?
【中2 数学】 2-②① 連立方程式の利用(数字)
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
中2 数学 連立方程式の利用(数字)
次の問に答えよ
①2つの数の和は120で、
一方の数は、他方の数の2倍より9小さいとき、
この2つの数は?
②2けたの正の整数がある。この整数は、
各位の数の和の3倍より5大きく、また
十の位の数と一の位の戦を入れかえてできる2けたの整数は
もとの整数よりも45大きくなります。もとの整数は?
この動画を見る
中2 数学 連立方程式の利用(数字)
次の問に答えよ
①2つの数の和は120で、
一方の数は、他方の数の2倍より9小さいとき、
この2つの数は?
②2けたの正の整数がある。この整数は、
各位の数の和の3倍より5大きく、また
十の位の数と一の位の戦を入れかえてできる2けたの整数は
もとの整数よりも45大きくなります。もとの整数は?
中2 数学】 2-⑳ 連立方程式の利用(割合) 【6~7月】
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
中2 数学 連立方程式の利用(割合)
次の問に答えよ
①学年の人数は、男女あわせて165人。
男子の15%、女子の20%がボランティア活動に参加。
この学年の男子と女子の人数は?
②服とズボンを買いました。
定価なら3100円しますが、
服を20%引き、ズボンを30%引きだったので2300円でした。
それぞれの定価は?
※表は動画内参照
この動画を見る
中2 数学 連立方程式の利用(割合)
次の問に答えよ
①学年の人数は、男女あわせて165人。
男子の15%、女子の20%がボランティア活動に参加。
この学年の男子と女子の人数は?
②服とズボンを買いました。
定価なら3100円しますが、
服を20%引き、ズボンを30%引きだったので2300円でした。
それぞれの定価は?
※表は動画内参照
【中2 数学】 2-①⑨(旧) 連立方程式の利用(みはじ編)
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
中2 数学 連立方程式の利用(みはじ編)
A地点からB地点を通ってC地点まで170kmの道のりを、
A地点からB地点まで時速30km、
B地点からC地点まで時速70kmで行くと、
3時間かかりました。
AからB、BからCまでの道のりは?
※図は動画内参照
この動画を見る
中2 数学 連立方程式の利用(みはじ編)
A地点からB地点を通ってC地点まで170kmの道のりを、
A地点からB地点まで時速30km、
B地点からC地点まで時速70kmで行くと、
3時間かかりました。
AからB、BからCまでの道のりは?
※図は動画内参照
【中2 数学】 2-①⑧(旧) 連立方程式の利用
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
中2 数学 連立方程式の利用数学(連立方程式の利用・お金編)
次の問いに答えよ
①りんごを4こ、みかんを3こ買うと690円、りんごを5こ、みかんを2こ買うと740円です。
りんごとみかんの値段はいくらですか?
②1個140円のりんごと、1個50円のみかんをあわせて10個買うと、860円でした。
りんごとみかんをそれぞれ何個ずつ買いましたか?
この動画を見る
中2 数学 連立方程式の利用数学(連立方程式の利用・お金編)
次の問いに答えよ
①りんごを4こ、みかんを3こ買うと690円、りんごを5こ、みかんを2こ買うと740円です。
りんごとみかんの値段はいくらですか?
②1個140円のりんごと、1個50円のみかんをあわせて10個買うと、860円でした。
りんごとみかんをそれぞれ何個ずつ買いましたか?
【中2 数学】 2-①⑦(旧) 連立方程式(計算の応用)
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
中2 数学 連立方程式(計算の応用)
次の連立方程式を解け
①$\begin{cases} 4x+5y=3 \\ 2(x-3y)=4x-1 \end{cases}$
②$\begin{cases} \dfrac{x}{4}-\dfrac{y}{5}=1 \\ 3x+4y=-52 \end{cases}$
③$\begin{cases} 0.3x-0.2y=1 \\ 5x+3y=4 \end{cases}$
④$ 3x-7y=-x+5y=2 $
この動画を見る
中2 数学 連立方程式(計算の応用)
次の連立方程式を解け
①$\begin{cases} 4x+5y=3 \\ 2(x-3y)=4x-1 \end{cases}$
②$\begin{cases} \dfrac{x}{4}-\dfrac{y}{5}=1 \\ 3x+4y=-52 \end{cases}$
③$\begin{cases} 0.3x-0.2y=1 \\ 5x+3y=4 \end{cases}$
④$ 3x-7y=-x+5y=2 $
【中2 数学】 2-①⑥(旧) 連立方程式(代入法)
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
中2数学 連立方程式(代入法)
次の連立方程式を解け
①$\begin{cases} y=x-1 \\ 3x+2y=13 \end{cases}$
②$\begin{cases} x-3y=4 \\ 2x+y=1 \end{cases}$
この動画を見る
中2数学 連立方程式(代入法)
次の連立方程式を解け
①$\begin{cases} y=x-1 \\ 3x+2y=13 \end{cases}$
②$\begin{cases} x-3y=4 \\ 2x+y=1 \end{cases}$
【中2 数学】 2-①⑤(旧) 連立方程式(加減法)
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
中2 数学 連立方程式(加減法)
次の連立方程式を解け
$\begin{cases}
3x+2y=4 \\
x-y=3
\end{cases}$
この動画を見る
中2 数学 連立方程式(加減法)
次の連立方程式を解け
$\begin{cases}
3x+2y=4 \\
x-y=3
\end{cases}$