中2数学
【数学】中2-19 ややこしい連立方程式②
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$5x+=-x+7y=19$
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
0.2x-0.03y=0.08 \\
\displaystyle \frac{2}{3}x+\displaystyle \frac{y}{2}=\displaystyle \frac{8}{3}
\end{array}
\right.
\end{eqnarray}$
③
次の$2$組の$x,y$についての連立方程式が同じ解をもつとき、
$a,b$の値は?
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-2y=-11 \\
-3x+2y=a
\end{array}
\right.
\end{eqnarray}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
bx+2y=b \\
x-4y=5
\end{array}
\right.
\end{eqnarray}$
この動画を見る
①$5x+=-x+7y=19$
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
0.2x-0.03y=0.08 \\
\displaystyle \frac{2}{3}x+\displaystyle \frac{y}{2}=\displaystyle \frac{8}{3}
\end{array}
\right.
\end{eqnarray}$
③
次の$2$組の$x,y$についての連立方程式が同じ解をもつとき、
$a,b$の値は?
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-2y=-11 \\
-3x+2y=a
\end{array}
\right.
\end{eqnarray}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
bx+2y=b \\
x-4y=5
\end{array}
\right.
\end{eqnarray}$
再撮影しましたので、概要欄のリンクからお願いします!
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
( )も分数も少数も全部消してやるぜ!
①
$\begin{eqnarray}
\left\{
\begin{array}{l}
3(x+y)=4x-7 \\
2x=3y+8
\end{array}
\right.
\end{eqnarray}$
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
0.5x-0.2y=2 \\
2x-3y=-3
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{x}{3}=+\displaystyle \frac{y}{4}=-1 \\
3y=5x-9
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
2(3x+y)=8x+y+9 \\
5x-4y+30=0
\end{array}
\right.
\end{eqnarray}$
この動画を見る
( )も分数も少数も全部消してやるぜ!
①
$\begin{eqnarray}
\left\{
\begin{array}{l}
3(x+y)=4x-7 \\
2x=3y+8
\end{array}
\right.
\end{eqnarray}$
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
0.5x-0.2y=2 \\
2x-3y=-3
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{x}{3}=+\displaystyle \frac{y}{4}=-1 \\
3y=5x-9
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
2(3x+y)=8x+y+9 \\
5x-4y+30=0
\end{array}
\right.
\end{eqnarray}$
【数学】中2-16 連立方程式③ 加減法の応用編
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
係数が揃っていないなら①____算使って揃えちゃえばいい!
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+2y=3 \\
2x-3y=-22
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x-2y=-8 \\
7x+4y=-10
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=3 \\
3x+5y=7
\end{array}
\right.
\end{eqnarray}$
⑤
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=-19 \\
5x+4y=10
\end{array}
\right.
\end{eqnarray}$
この動画を見る
係数が揃っていないなら①____算使って揃えちゃえばいい!
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+2y=3 \\
2x-3y=-22
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x-2y=-8 \\
7x+4y=-10
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=3 \\
3x+5y=7
\end{array}
\right.
\end{eqnarray}$
⑤
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=-19 \\
5x+4y=10
\end{array}
\right.
\end{eqnarray}$
【数学】中2-17 連立方程式④ 代入法編
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
どちらかの式の左辺を①____としよう!
【代入法で解いてね!】
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=y+1 \\
3x-2y=5
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=4 \\
y=3x-5
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=-1 \\
-2x+5y=-13
\end{array}
\right.
\end{eqnarray}$
⑤
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x=3y-7 \\
4x-7y=-17
\end{array}
\right.
\end{eqnarray}$
この動画を見る
どちらかの式の左辺を①____としよう!
【代入法で解いてね!】
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=y+1 \\
3x-2y=5
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=4 \\
y=3x-5
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=-1 \\
-2x+5y=-13
\end{array}
\right.
\end{eqnarray}$
⑤
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x=3y-7 \\
4x-7y=-17
\end{array}
\right.
\end{eqnarray}$
【数学】中2-15 連立方程式② 加減法の基本編
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
2つの文字で①____が揃っているほうが消えるように
(+)か(ー)を選ぼう!
◎加減法で解こう!!
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=2 \\
2x-y=7
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=-1 \\
3x+2y=1
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x+3y=13 \\
x+3y=1
\end{array}
\right.
\end{eqnarray}$
⑤
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x+2y=4 \\
5x-2y=16
\end{array}
\right.
\end{eqnarray}$
この動画を見る
2つの文字で①____が揃っているほうが消えるように
(+)か(ー)を選ぼう!
◎加減法で解こう!!
②
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=2 \\
2x-y=7
\end{array}
\right.
\end{eqnarray}$
③
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=-1 \\
3x+2y=1
\end{array}
\right.
\end{eqnarray}$
④
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x+3y=13 \\
x+3y=1
\end{array}
\right.
\end{eqnarray}$
⑤
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x+2y=4 \\
5x-2y=16
\end{array}
\right.
\end{eqnarray}$
【数学】中2-14 連立方程式① 準備編
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$x+y=15$のように、2つの文字を ふくむ一次方程式を
①________という。
そして・・・ $\begin{eqnarray}
\left\{
\begin{array}{l}
2x+y=15 \\
2x+y=9
\end{array}
\right.
\end{eqnarray}$ みたいに
2つの方程式を組にしたものを、 ②________っていって、
これを計算して でた、どちらにもあてはまる文字の値の
組を③________っていうんだ!
㋐
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
2x-y=8
\end{array}
\right.
\end{eqnarray}$
㋑
$\begin{eqnarray}
\left\{
\begin{array}{l}
x-y=1 \\
x+2y=-1
\end{array}
\right.
\end{eqnarray}$
㋒
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=7 \\
-x+y=-6
\end{array}
\right.
\end{eqnarray}$
㋓
$\begin{eqnarray}
\left\{
\begin{array}{l}
-2x+y=-4 \\
x-3y=9
\end{array}
\right.
\end{eqnarray}$
④㋐~㋓の中で$(3,-2)$が解に
なるすべてを選ぼう!
この動画を見る
$x+y=15$のように、2つの文字を ふくむ一次方程式を
①________という。
そして・・・ $\begin{eqnarray}
\left\{
\begin{array}{l}
2x+y=15 \\
2x+y=9
\end{array}
\right.
\end{eqnarray}$ みたいに
2つの方程式を組にしたものを、 ②________っていって、
これを計算して でた、どちらにもあてはまる文字の値の
組を③________っていうんだ!
㋐
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
2x-y=8
\end{array}
\right.
\end{eqnarray}$
㋑
$\begin{eqnarray}
\left\{
\begin{array}{l}
x-y=1 \\
x+2y=-1
\end{array}
\right.
\end{eqnarray}$
㋒
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=7 \\
-x+y=-6
\end{array}
\right.
\end{eqnarray}$
㋓
$\begin{eqnarray}
\left\{
\begin{array}{l}
-2x+y=-4 \\
x-3y=9
\end{array}
\right.
\end{eqnarray}$
④㋐~㋓の中で$(3,-2)$が解に
なるすべてを選ぼう!
【小5 算数】 小5-16 合同な図形②
【For you 動画-8】 中2-連立方程式の利用
単元:
#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
中2の連立方程式を利用し答えよ。
①一の位と百の位が等しい3けたの自然数がある。
この数の各位の数字の和は$13$で、 百の位と十の位の数字を入れかえてできる数は、
もとの数より$180$小さくなる。
もとの自然数は?
②ある学校の去年の入学者数は全体で $320$人でした。
今年は男子が$15%$増えて、 女子が$6%$減ったので、入学者数は 全体で$6$人増えた。
今年の男子と女子の入学者数は?
この動画を見る
中2の連立方程式を利用し答えよ。
①一の位と百の位が等しい3けたの自然数がある。
この数の各位の数字の和は$13$で、 百の位と十の位の数字を入れかえてできる数は、
もとの数より$180$小さくなる。
もとの自然数は?
②ある学校の去年の入学者数は全体で $320$人でした。
今年は男子が$15%$増えて、 女子が$6%$減ったので、入学者数は 全体で$6$人増えた。
今年の男子と女子の入学者数は?
【数学】中2-11 文字式の利用③ 2けたの自然数編
単元:
#数学(中学生)#中2数学#1次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
十の位を$a$、一の位を$b$とする
2けたの自然数は①____と表される。
百の位を$a$,十の位を$b$,一の位を$C$とする
3けたの自然数は②____!!
◎2けたの自然数と、その数の十の位と一の位の数を
入れかえてできる数の和が$11$の倍数になることを説明しよう!
【説明】
③____の十の位を$a$、一の位を$b$とすると、
③____は④____,位を入れかえた数は⑤____
と表される。
( ④ )+( ⑤ )=⑥____=⑦____
⑧____は整数なので、
⑨____は⑩____。
よって2桁の自然数と、その数の十の位と一の位数を
入れかえてできる数の和は、11倍数になる。
◎3けたの自然数と、その数の百の位と一の位の数を 入れかえてできる数の差が99の倍数になることを説明しよう!
【説明】
⑪____の百の位を$a$、十の位を$b$、一の位を$C$とすると、
⑪____は⑫____,位を入れかえた数は⑬____
と表される。
( ⑫ )-( ⑬ )=⑭____=⑮____
⑯____は整数なので、
⑰____は⑱____。
よって、3けたの自然数と、その数の百の位と一の位の数を 入れかえてできる数の差は99の倍数になる。
この動画を見る
十の位を$a$、一の位を$b$とする
2けたの自然数は①____と表される。
百の位を$a$,十の位を$b$,一の位を$C$とする
3けたの自然数は②____!!
◎2けたの自然数と、その数の十の位と一の位の数を
入れかえてできる数の和が$11$の倍数になることを説明しよう!
【説明】
③____の十の位を$a$、一の位を$b$とすると、
③____は④____,位を入れかえた数は⑤____
と表される。
( ④ )+( ⑤ )=⑥____=⑦____
⑧____は整数なので、
⑨____は⑩____。
よって2桁の自然数と、その数の十の位と一の位数を
入れかえてできる数の和は、11倍数になる。
◎3けたの自然数と、その数の百の位と一の位の数を 入れかえてできる数の差が99の倍数になることを説明しよう!
【説明】
⑪____の百の位を$a$、十の位を$b$、一の位を$C$とすると、
⑪____は⑫____,位を入れかえた数は⑬____
と表される。
( ⑫ )-( ⑬ )=⑭____=⑮____
⑯____は整数なので、
⑰____は⑱____。
よって、3けたの自然数と、その数の百の位と一の位の数を 入れかえてできる数の差は99の倍数になる。
【数学】中2-12 文字式の利用④ カレンダー編
単元:
#数学(中学生)#中2数学#1次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎Ⓐのように5つの数字を十字型に囲むと、
その和が、中央の数の5倍になることを説明しよう!
【説明】
$n$を①____とすると、5つの数は、
②____,③____,④____,⑤____,⑥____
と表される。
( ② )+( ③ )+( ④ )+( ⑤ )+( ⑥ )
=⑦____
⑧____は⑨____なので、
⑩____は⑪____。
よって、5つの数字を十字型に囲むと、
その和は、中央の数の5倍になる。
◎$n$を使ってどう表す?
Ⓑ、$n$⑫____,⑬____
Ⓒ、$n$⑭____,⑮____
この動画を見る
◎Ⓐのように5つの数字を十字型に囲むと、
その和が、中央の数の5倍になることを説明しよう!
【説明】
$n$を①____とすると、5つの数は、
②____,③____,④____,⑤____,⑥____
と表される。
( ② )+( ③ )+( ④ )+( ⑤ )+( ⑥ )
=⑦____
⑧____は⑨____なので、
⑩____は⑪____。
よって、5つの数字を十字型に囲むと、
その和は、中央の数の5倍になる。
◎$n$を使ってどう表す?
Ⓑ、$n$⑫____,⑬____
Ⓒ、$n$⑭____,⑮____
【数学】中2-13 文字式の利用⑤ 面積と体積編
単元:
#数学(中学生)#中2数学#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①底面の半径が$r$、高さが$h$の円柱$A$がある。
それの半径を4倍、高さを半分にした円柱$B$をつくるとき、
$B$の体積は$A$の体積の何倍?
②色のついた部分の面積は?
※図は動画内参照
この動画を見る
①底面の半径が$r$、高さが$h$の円柱$A$がある。
それの半径を4倍、高さを半分にした円柱$B$をつくるとき、
$B$の体積は$A$の体積の何倍?
②色のついた部分の面積は?
※図は動画内参照
【数学】中2-10 文字式の利用② 問題編
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎2つの奇数の和は偶数になることを説明しよう!!
【説明】
$m,n$を①____とすると、2つの奇数は
②____,③____と表される。
( ② )+( ③ )
=④____=⑤____
⑥____整数だから、
⑦____は⑧____。
よって、2つの奇数の和は偶数になる。
◎連続する3つの整数の和は3の倍数に
なることを説明しょう!!
【説明】
$n$を⑨____とすると、連続する3つの整数は、
⑩____,⑪____,⑫____と表される。
( ⑩ )+( ⑪ )+( ⑫ )
⑬____=⑭____
⑮____整数だから、
⑯____は⑰____。
よって、連続する3つの整数の和は3の倍数になる。
この動画を見る
◎2つの奇数の和は偶数になることを説明しよう!!
【説明】
$m,n$を①____とすると、2つの奇数は
②____,③____と表される。
( ② )+( ③ )
=④____=⑤____
⑥____整数だから、
⑦____は⑧____。
よって、2つの奇数の和は偶数になる。
◎連続する3つの整数の和は3の倍数に
なることを説明しょう!!
【説明】
$n$を⑨____とすると、連続する3つの整数は、
⑩____,⑪____,⑫____と表される。
( ⑩ )+( ⑪ )+( ⑫ )
⑬____=⑭____
⑮____整数だから、
⑯____は⑰____。
よって、連続する3つの整数の和は3の倍数になる。
【数学】中2-7 単項式の乗法・除法
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
暗算ができないときは、長~い①____を使う!
そのときに、②____のすぐ後ろの項
を③____にするのを忘れないでね!!
④$5x \times (-2y)=$
⑤$-32xy \div (-4y)=$
⑥$\displaystyle \frac{1}{2}x \times \displaystyle \frac{4}{3}x=$
⑦$10a^2 \div (-2a^2)=$
⑧$(-5x)^2=$
⑨$-(5x)^2=$
⑩$6x^2y \div \displaystyle \frac{3}{2}xy=$
【ポイント】
$\displaystyle \frac{3}{2}xy$は⑪____と同じ!!
⑫$-5x^2 \div 10x \times (-4x)=$
⑬$\displaystyle \frac{2}{3}xy^2 \div \displaystyle \frac{1}{9}xy \div 2x=$
⑭$(-2x) \times (-3y) \times (-4xy)=$
⑮$(-2a)^2 \times (-4b) \div \displaystyle \frac{8}{5}ab=$
この動画を見る
暗算ができないときは、長~い①____を使う!
そのときに、②____のすぐ後ろの項
を③____にするのを忘れないでね!!
④$5x \times (-2y)=$
⑤$-32xy \div (-4y)=$
⑥$\displaystyle \frac{1}{2}x \times \displaystyle \frac{4}{3}x=$
⑦$10a^2 \div (-2a^2)=$
⑧$(-5x)^2=$
⑨$-(5x)^2=$
⑩$6x^2y \div \displaystyle \frac{3}{2}xy=$
【ポイント】
$\displaystyle \frac{3}{2}xy$は⑪____と同じ!!
⑫$-5x^2 \div 10x \times (-4x)=$
⑬$\displaystyle \frac{2}{3}xy^2 \div \displaystyle \frac{1}{9}xy \div 2x=$
⑭$(-2x) \times (-3y) \times (-4xy)=$
⑮$(-2a)^2 \times (-4b) \div \displaystyle \frac{8}{5}ab=$
【数学】中2-8 xについて解く
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
『$x$について解きなさい』という問題は①____
という形で答えればいい!!
◎〔 〕内の文字について解こう!
②$x+2y=5 〔x〕$
③$x-y=12 〔y〕$
④$2x-4y=3〔x〕$
⑤$C=3(a+b) 〔a〕$
⑥$V=πr^2h 〔h〕$
⑦$3m=\displaystyle \frac{a+b}{2} 〔b〕$
⑧$V=\displaystyle \frac{1}{3}πr^2h 〔h〕$
⑨$S=\displaystyle \frac{(a+b)h}{2} 〔b〕$
この動画を見る
『$x$について解きなさい』という問題は①____
という形で答えればいい!!
◎〔 〕内の文字について解こう!
②$x+2y=5 〔x〕$
③$x-y=12 〔y〕$
④$2x-4y=3〔x〕$
⑤$C=3(a+b) 〔a〕$
⑥$V=πr^2h 〔h〕$
⑦$3m=\displaystyle \frac{a+b}{2} 〔b〕$
⑧$V=\displaystyle \frac{1}{3}πr^2h 〔h〕$
⑨$S=\displaystyle \frac{(a+b)h}{2} 〔b〕$
【数学】中2-6 式の値
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
整理してから計算すると楽になることが多いよ!
①$x=-2,y=3$のとき、$4(x+2y)-3(2x-y)$の値は?
②$x=-1.2,y=0.5$のとき、$-5(3x-y)-(5x-y)$の値は?
③$x=\displaystyle \frac{1}{4},y=-\displaystyle \frac{2}{3}$のとき、$2(x-3y)-3(2x-y)$の値は?
④$A=a+3b,B=-2a+b$のとき、$5A-2B$は?
⑤$x=3,y=-2$のとき、$6xy^2 \div (-8xy) \times 4x$の値は?
この動画を見る
整理してから計算すると楽になることが多いよ!
①$x=-2,y=3$のとき、$4(x+2y)-3(2x-y)$の値は?
②$x=-1.2,y=0.5$のとき、$-5(3x-y)-(5x-y)$の値は?
③$x=\displaystyle \frac{1}{4},y=-\displaystyle \frac{2}{3}$のとき、$2(x-3y)-3(2x-y)$の値は?
④$A=a+3b,B=-2a+b$のとき、$5A-2B$は?
⑤$x=3,y=-2$のとき、$6xy^2 \div (-8xy) \times 4x$の値は?
【数学】中2-5 いろいろな多項式の計算②
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
【レベル3】
計算せよ。
①$\displaystyle \frac{x-3y}{2}-\displaystyle \frac{5x+2y}{3}$
通分したら②____を使おう!!
③$x+3y-\displaystyle \frac{2x+7y}{3}$
④$\displaystyle \frac{1}{8}(7)(-2y)+\displaystyle \frac{1}{2}(x+2y)$
⑤$\displaystyle \frac{3}{2}(x-3y)-\displaystyle \frac{1}{3}(7x-2y)$
この動画を見る
【レベル3】
計算せよ。
①$\displaystyle \frac{x-3y}{2}-\displaystyle \frac{5x+2y}{3}$
通分したら②____を使おう!!
③$x+3y-\displaystyle \frac{2x+7y}{3}$
④$\displaystyle \frac{1}{8}(7)(-2y)+\displaystyle \frac{1}{2}(x+2y)$
⑤$\displaystyle \frac{3}{2}(x-3y)-\displaystyle \frac{1}{3}(7x-2y)$
【数学】中2-3 式の加法・減法②
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2つの式をたそう!!
①$ 2x-5y,-x-2y+5$
②$-x^2+11x-9,-7x+x^2$
左の式から右の式をひこう!!
③$x-2y, 3x+5y-2$
④$-2a+5b-c, 4a-b-c$
⑤ある式から$-3x+y$をひくと、$4x-5y$に なった。ある式をもとめよう!
⑥$7x-2y+4$からある式をひくと、$4x+5y-2$ になった。ある式をもとめよう!
この動画を見る
◎次の2つの式をたそう!!
①$ 2x-5y,-x-2y+5$
②$-x^2+11x-9,-7x+x^2$
左の式から右の式をひこう!!
③$x-2y, 3x+5y-2$
④$-2a+5b-c, 4a-b-c$
⑤ある式から$-3x+y$をひくと、$4x-5y$に なった。ある式をもとめよう!
⑥$7x-2y+4$からある式をひくと、$4x+5y-2$ になった。ある式をもとめよう!
【数学】中2-4 いろいろな多項式の計算①
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
【レベル1】
①$5(2x-3y)=$
②$(8x-6y) \times (-\displaystyle \frac{1}{2})=$
③$(-16)(+10) \div (-4)=$
④$(4)(+6y)\div\displaystyle \frac{2}{3}$
【レベル2】
⑤$3(4x-2y)-(7x-5y)$
⑥$-4(-x+3y-2)-2(-5y+3x-1) $
⑦$\displaystyle \frac{2}{3}(6a-2b)+\div\displaystyle \frac{1}{3}(-9a+12b)$
この動画を見る
【レベル1】
①$5(2x-3y)=$
②$(8x-6y) \times (-\displaystyle \frac{1}{2})=$
③$(-16)(+10) \div (-4)=$
④$(4)(+6y)\div\displaystyle \frac{2}{3}$
【レベル2】
⑤$3(4x-2y)-(7x-5y)$
⑥$-4(-x+3y-2)-2(-5y+3x-1) $
⑦$\displaystyle \frac{2}{3}(6a-2b)+\div\displaystyle \frac{1}{3}(-9a+12b)$
【数学】中2-2 式の加法・減法①
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
文字の部分が同じ項を①____といって
計算することができるんだ!
◎計算しよう!!
②$5x+3y-2x+y=$
③$-2x^2+7x+5x-2=$
④$-3a^2b+2ab^2-6ab^2-5a^2b=$
⑤$\displaystyle \frac{1}{3}x^2-2x+\displaystyle \frac{1}{2}x-x^2=$
⑥$(7x=5y)+(4x+y)$
⑦$(-x+12y)-(-5y+x-4)$
⑧$6x-7y$
$-x+y$
______
⑨$-x^2+6x$
$5x^26x-9$
______
⑩と⑦の式をひっ算でやってみよう!!
この動画を見る
文字の部分が同じ項を①____といって
計算することができるんだ!
◎計算しよう!!
②$5x+3y-2x+y=$
③$-2x^2+7x+5x-2=$
④$-3a^2b+2ab^2-6ab^2-5a^2b=$
⑤$\displaystyle \frac{1}{3}x^2-2x+\displaystyle \frac{1}{2}x-x^2=$
⑥$(7x=5y)+(4x+y)$
⑦$(-x+12y)-(-5y+x-4)$
⑧$6x-7y$
$-x+y$
______
⑨$-x^2+6x$
$5x^26x-9$
______
⑩と⑦の式をひっ算でやってみよう!!
【数学】中2-1 単項式と多項式
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数や文字の①____だけでできている式を②____っていって、②の③____の形
で表された式を④____っていうんだ。
②で、かけあわせている文字の個数をその式の⑤____という!!
◎右上のⒶ~Ⓕについて答えよう!!
⑥単項式はどれ?
⑦多項式はどれ?
⑧Cの項と係数は?
項→
係→
Ⓐ$3x^2-5x+2$
Ⓑ$-12xy$
Ⓒ$\displaystyle \frac{a}{4}-ab^2+3$
Ⓓ$7$
Ⓔ$\displaystyle \frac{3}{2}x^2y$
Ⓕ$ab^cd$
Ⓐの$3x^2$の次数は⑨____で、
$-5X$の次数は⑩____で、
$+2$の次数は⑪____だから、Ⓐは⑫____次式。
そして、Ⓑは⑬____次式で、Ⓒは⑭____ 次式で、
Ⓓは⑮____次式で、Ⓔは⑯____は 次式で
Ⓕは⑰____次式だね!!
この動画を見る
数や文字の①____だけでできている式を②____っていって、②の③____の形
で表された式を④____っていうんだ。
②で、かけあわせている文字の個数をその式の⑤____という!!
◎右上のⒶ~Ⓕについて答えよう!!
⑥単項式はどれ?
⑦多項式はどれ?
⑧Cの項と係数は?
項→
係→
Ⓐ$3x^2-5x+2$
Ⓑ$-12xy$
Ⓒ$\displaystyle \frac{a}{4}-ab^2+3$
Ⓓ$7$
Ⓔ$\displaystyle \frac{3}{2}x^2y$
Ⓕ$ab^cd$
Ⓐの$3x^2$の次数は⑨____で、
$-5X$の次数は⑩____で、
$+2$の次数は⑪____だから、Ⓐは⑫____次式。
そして、Ⓑは⑬____次式で、Ⓒは⑭____ 次式で、
Ⓓは⑮____次式で、Ⓔは⑯____は 次式で
Ⓕは⑰____次式だね!!
【数学】中2-84 確率チャレンジ Lv.6(カード編)
単元:
#数学(中学生)#中2数学#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①の空欄を埋め、②~⑤の確率を求めよ。
カードの中に①____があったら
樹形図注意報です!!
$\boxed{ 1 },\boxed{ 2 },\boxed{ 3 },\boxed{ 4 }$のカードを続けて2枚ひき、左から並べ、2けたの整数をつくる!
② 2けたの整数は 全部で何通り?
③ この整数が3の倍数になる確率は?
◎ $\boxed{ 0 },\boxed{ 1 },\boxed{ 3 },\boxed{ 6 }$のカードを続けて3枚ひき、左から並べて、3けたの整数をつくる!
④この整数が偶数になる確率は?
⑤この整数が4でわり切れる確率は?
この動画を見る
①の空欄を埋め、②~⑤の確率を求めよ。
カードの中に①____があったら
樹形図注意報です!!
$\boxed{ 1 },\boxed{ 2 },\boxed{ 3 },\boxed{ 4 }$のカードを続けて2枚ひき、左から並べ、2けたの整数をつくる!
② 2けたの整数は 全部で何通り?
③ この整数が3の倍数になる確率は?
◎ $\boxed{ 0 },\boxed{ 1 },\boxed{ 3 },\boxed{ 6 }$のカードを続けて3枚ひき、左から並べて、3けたの整数をつくる!
④この整数が偶数になる確率は?
⑤この整数が4でわり切れる確率は?
【数学】中2-85 確率チャレンジ Lv.7(まとめ編①)
単元:
#数学(中学生)#中2数学#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①~③の確率を求めよ。
①$\boxed{ 0 },\boxed{ 1 },\boxed{ 2 },\boxed{ 3 },\boxed{ 4 }$のカードから、
1枚ひき、それを十の位にして、もとにもどす。 そして、もう一度ひいて、それを一の位とする。 できた2けたの数が3の倍数になる確率は?
②数直線上の原点に動く点Pがいる。
コインを投げて、表が出たら正の方向に1. 裏が出たら負の方向に1進む。
コインを3回投げるとき、点Pが最後に-1にいる確率は?
※図は動画内参照
③図の五角形の頂点上を 移動する点Qがいる。 点Qはさいころの出た目 の数だけ頂点を反時計 まわりに移動する。
大小2つのさいころを振る とき、最後に点、Eで止まる確率は? (点QはAにいるよ。)
※図は動画内参照
この動画を見る
①~③の確率を求めよ。
①$\boxed{ 0 },\boxed{ 1 },\boxed{ 2 },\boxed{ 3 },\boxed{ 4 }$のカードから、
1枚ひき、それを十の位にして、もとにもどす。 そして、もう一度ひいて、それを一の位とする。 できた2けたの数が3の倍数になる確率は?
②数直線上の原点に動く点Pがいる。
コインを投げて、表が出たら正の方向に1. 裏が出たら負の方向に1進む。
コインを3回投げるとき、点Pが最後に-1にいる確率は?
※図は動画内参照
③図の五角形の頂点上を 移動する点Qがいる。 点Qはさいころの出た目 の数だけ頂点を反時計 まわりに移動する。
大小2つのさいころを振る とき、最後に点、Eで止まる確率は? (点QはAにいるよ。)
※図は動画内参照
【数学】中2-86 確率チャレンジ Lv.8(まとめ編②)
単元:
#数学(中学生)#中2数学#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
確率を求めよ。
①Aの箱には$\boxed{ 5 },\boxed{ -2 },\boxed{ -6 }$が
Bの箱には$\boxed{ + },\boxed{ - } $が入っている。
ひいたものはもどさずに、A→B→Aの 順番にひき式を
つくり、その答えが 3より大きくなる確率は?
②図のように8段の階段があり、図の場所に AさんとBさんがいる。2人はそれぞれさいころを振り、出た目の数だけ、
Aさんは上り、Bさんは下る。
さいころを1回ずつ振った後に、 AさんがBさんより上にいる 確率は?
※図は動画内参照
③1辺の長さが1cmのひし形ABCD上の図の位置に2点P,Qがいる。大小2つのさいころを投げ、大きいさいころの目の数だけ、点Pが反時計まわりに、小さいさいころの目の数だけ、点Qが時計まわりに頂点を移動する。
移動後に2点が同じ場所にいる確率は?
※図は動画内参照
この動画を見る
確率を求めよ。
①Aの箱には$\boxed{ 5 },\boxed{ -2 },\boxed{ -6 }$が
Bの箱には$\boxed{ + },\boxed{ - } $が入っている。
ひいたものはもどさずに、A→B→Aの 順番にひき式を
つくり、その答えが 3より大きくなる確率は?
②図のように8段の階段があり、図の場所に AさんとBさんがいる。2人はそれぞれさいころを振り、出た目の数だけ、
Aさんは上り、Bさんは下る。
さいころを1回ずつ振った後に、 AさんがBさんより上にいる 確率は?
※図は動画内参照
③1辺の長さが1cmのひし形ABCD上の図の位置に2点P,Qがいる。大小2つのさいころを投げ、大きいさいころの目の数だけ、点Pが反時計まわりに、小さいさいころの目の数だけ、点Qが時計まわりに頂点を移動する。
移動後に2点が同じ場所にいる確率は?
※図は動画内参照
【数学】中2-83 確率チャレンジ Lv.5(くじびき編)
単元:
#数学(中学生)#中2数学#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①の空欄を埋め、②~⑩を求めよ。
ポくじも1つ1つに①____!!
◎5本のうち、あたりくじは2本!
このくじをAくんがひいた後に、そのくじをもどさないで、
次にBくんがひく。
② Aくんがあたる確率は?
③ Bくんだけがあたる確率は?
④2人ともあたる確率は?
⑤ Aくんがひいたくじをもどすとき、 2人ともあたる確率は?
◎16本のうち、あたりくじは2本!!
Aくんが同時に2本ひきます。
⑥2本ともはずれる 確率は?
⑦少なくとも体は あたる確率は?
◎A、B、C、D、Eの5人でくじをひき、えらばれた2人は
チーズケーキ、残りの3人はチョコケーキを食べる。
⑧分け方は全部で何通り?
⑨Cがチーズケーキを 食べる確率は?
⑩BとEが同じ物を 食べる確率は?
この動画を見る
①の空欄を埋め、②~⑩を求めよ。
ポくじも1つ1つに①____!!
◎5本のうち、あたりくじは2本!
このくじをAくんがひいた後に、そのくじをもどさないで、
次にBくんがひく。
② Aくんがあたる確率は?
③ Bくんだけがあたる確率は?
④2人ともあたる確率は?
⑤ Aくんがひいたくじをもどすとき、 2人ともあたる確率は?
◎16本のうち、あたりくじは2本!!
Aくんが同時に2本ひきます。
⑥2本ともはずれる 確率は?
⑦少なくとも体は あたる確率は?
◎A、B、C、D、Eの5人でくじをひき、えらばれた2人は
チーズケーキ、残りの3人はチョコケーキを食べる。
⑧分け方は全部で何通り?
⑨Cがチーズケーキを 食べる確率は?
⑩BとEが同じ物を 食べる確率は?
【数学】中2-82 確率チャレンジ Lv.4(色玉編)
単元:
#数学(中学生)#中2数学#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①~⑧の空欄を埋めよ。
色玉の問題で樹形図を書くなら、1つ1つに①____!!
◎箱の中に赤玉3つ、青玉2つ、玉1つが 入っていて、そこから1つ取り出す!
②赤玉が出る確率は?
③白玉が赤玉が出る確率は?
④黒玉が出る確率は?
⑤ 白玉が出ない確率は?
◎箱の中に黄玉2つ、緑玉2つ 白玉1つが入っていて、
そこから同時に2つ取り出す!
⑥ 緑玉がふくまれ ている確率は?
⑦2個の玉色が 同じ確率は?
⑧『同時に2つ取り出す』を
『取り出した玉を箱にもどさないで、
1個ずつ2回取り出す』に かえた時の樹形図をかこう!!
この動画を見る
①~⑧の空欄を埋めよ。
色玉の問題で樹形図を書くなら、1つ1つに①____!!
◎箱の中に赤玉3つ、青玉2つ、玉1つが 入っていて、そこから1つ取り出す!
②赤玉が出る確率は?
③白玉が赤玉が出る確率は?
④黒玉が出る確率は?
⑤ 白玉が出ない確率は?
◎箱の中に黄玉2つ、緑玉2つ 白玉1つが入っていて、
そこから同時に2つ取り出す!
⑥ 緑玉がふくまれ ている確率は?
⑦2個の玉色が 同じ確率は?
⑧『同時に2つ取り出す』を
『取り出した玉を箱にもどさないで、
1個ずつ2回取り出す』に かえた時の樹形図をかこう!!
【数学】中2-80 確率チャレンジ Lv.2(2つのさいころ編)
単元:
#数学(中学生)#中2数学#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①~⑧の空欄を埋めよ。
2つのさいころのとき、確率の分母は①____
じゃなくて②____を使う!!
◎大小2つのさいころを同時に投げてみた!
③出る目の数の和が4になる確率は?
④出る目の数の差が4になる確率は?
⑤出る目の数の差が4にならない確率は?
⑥ちがった目がでる確率は?
⑦出る目の数の積が6の倍数になる確率は?
⑧少なくとも一方は5の目がでる確率は?
この動画を見る
①~⑧の空欄を埋めよ。
2つのさいころのとき、確率の分母は①____
じゃなくて②____を使う!!
◎大小2つのさいころを同時に投げてみた!
③出る目の数の和が4になる確率は?
④出る目の数の差が4になる確率は?
⑤出る目の数の差が4にならない確率は?
⑥ちがった目がでる確率は?
⑦出る目の数の積が6の倍数になる確率は?
⑧少なくとも一方は5の目がでる確率は?
【数学】中2-81 確率チャレンジ Lv.3(コイン編)
単元:
#数学(中学生)#中2数学#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①~⑨の空欄を埋めよ。
コインが2枚なら分母は①____
コインが3枚なら分母は②____
コインが4枚なら分母は③____
コインの問題は④____を書こう!!
◎3枚のコインA、B、Cを投げる!
⑤3枚とも裏となる確率は?
⑥少なくとも2枚は 表となる確率は?
◎500円、100円、50円、10円が1枚ずつあります。
これを4枚同時に投げる!!
⑦樹形図を書いてみよう!
⑧ 少なくとも1枚は裏となる確率は?
⑨表が出た硬貨の合計金額が160円以上になる確率は?
この動画を見る
①~⑨の空欄を埋めよ。
コインが2枚なら分母は①____
コインが3枚なら分母は②____
コインが4枚なら分母は③____
コインの問題は④____を書こう!!
◎3枚のコインA、B、Cを投げる!
⑤3枚とも裏となる確率は?
⑥少なくとも2枚は 表となる確率は?
◎500円、100円、50円、10円が1枚ずつあります。
これを4枚同時に投げる!!
⑦樹形図を書いてみよう!
⑧ 少なくとも1枚は裏となる確率は?
⑨表が出た硬貨の合計金額が160円以上になる確率は?
【数学】中2-79 確率チャレンジ Lv.1(基本編)
単元:
#数学(中学生)#中2数学#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
確率をだすときは基本的に①___を使い、
公式は・・・
確率=$\displaystyle \frac{③ }{④ } $なんだ!
◎1つのさいころを投げる!
④5の目がでる確率は?
⑤4以下の目が?
⑥7の目が ?
⑦1けたの数字の目が その他の動画でる確率は?
⑧A.B.C.Dの4人でリレーをします。 4人の走る順番は全部で何通り?
⑨A~Eの中から2人の選手をえらぶと 選び方は全部で何通り?
①~⑨をそれぞれ答えよ。
この動画を見る
確率をだすときは基本的に①___を使い、
公式は・・・
確率=$\displaystyle \frac{③ }{④ } $なんだ!
◎1つのさいころを投げる!
④5の目がでる確率は?
⑤4以下の目が?
⑥7の目が ?
⑦1けたの数字の目が その他の動画でる確率は?
⑧A.B.C.Dの4人でリレーをします。 4人の走る順番は全部で何通り?
⑨A~Eの中から2人の選手をえらぶと 選び方は全部で何通り?
①~⑨をそれぞれ答えよ。
【数学】中2-78 確率の意味
単元:
#数学(中学生)#中2数学#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎ペットボトルのふたを1000回投げてみた!
ふたが表になる確率を小数第2位まで
で求めると④___だね!ってことは、
もし、ふたを1500回投げたら、
表は⑤___回くらい出るんだろうな〜!
◎今度は、ふたを3つ投げてみたよ!!
⑥表が出やすい順番は?
→ →
①~⑥までの空欄を埋めよ。
※表は動画内参照
この動画を見る
◎ペットボトルのふたを1000回投げてみた!
ふたが表になる確率を小数第2位まで
で求めると④___だね!ってことは、
もし、ふたを1500回投げたら、
表は⑤___回くらい出るんだろうな〜!
◎今度は、ふたを3つ投げてみたよ!!
⑥表が出やすい順番は?
→ →
①~⑥までの空欄を埋めよ。
※表は動画内参照
【中2 数学】 中2-22 連立方程式の利用 (食塩水)
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
濃度(%)=$\displaystyle \frac{食塩}{食塩水} \times 100$
①190gの水に10gの食塩をとかしたとき、
食塩水の濃度は?
②7%の食塩水300gにとけている食塩は?
③ 8%と15%の食塩水をまぜて、 10%の食塩水を700g作ります。それぞれ?
この動画を見る
濃度(%)=$\displaystyle \frac{食塩}{食塩水} \times 100$
①190gの水に10gの食塩をとかしたとき、
食塩水の濃度は?
②7%の食塩水300gにとけている食塩は?
③ 8%と15%の食塩水をまぜて、 10%の食塩水を700g作ります。それぞれ?