中2数学
佐賀県立高校入試2021年「確率」
単元:
#数学(中学生)#中2数学#確率#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2021年「確率」
-----------------
【ルール】
大小2つのさいころを同時に1回投げ、大きいさいころの出た目の数を十の位の数、小さいさいころの出た目の数を一の位の数としてけたの整数をつくる
このとき、下記の各問いに答えなさい。
ただし、(ルール)にある大小2つのさいころはともに、1から6までのどの目が出ることも同様に確からしいものとする。
(ア)【ルール】に従ってつくられる2けたの整数は、全部で何通りあるか求めなさい。
(イ)【ルール】に従ってつくられる2けたの整数が、偶数となる確率を求めなさい。
(ウ)【ルール】に従ってつくられる2けたの整数が、3の倍数となる確率を求めなさい。
(エ)まず【ルール】に従ってだけたの整数をつくり、次にその整数の十の位の数と一の位の数を入れかえた整数をつくる。
はじめにつくられる整数が、あとでつくられる整数より大きい数である確率を求めなさい。
この動画を見る
佐賀県立高校入試2021年「確率」
-----------------
【ルール】
大小2つのさいころを同時に1回投げ、大きいさいころの出た目の数を十の位の数、小さいさいころの出た目の数を一の位の数としてけたの整数をつくる
このとき、下記の各問いに答えなさい。
ただし、(ルール)にある大小2つのさいころはともに、1から6までのどの目が出ることも同様に確からしいものとする。
(ア)【ルール】に従ってつくられる2けたの整数は、全部で何通りあるか求めなさい。
(イ)【ルール】に従ってつくられる2けたの整数が、偶数となる確率を求めなさい。
(ウ)【ルール】に従ってつくられる2けたの整数が、3の倍数となる確率を求めなさい。
(エ)まず【ルール】に従ってだけたの整数をつくり、次にその整数の十の位の数と一の位の数を入れかえた整数をつくる。
はじめにつくられる整数が、あとでつくられる整数より大きい数である確率を求めなさい。
2023高校入試解説33問目 最初の一問目の計算 中大杉並
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$2021 \times 2020 - 2020 \times 2019 + 2021 \times 2022 -2022 \times 2023$
2023中央大学杉並高等学校
この動画を見る
$2021 \times 2020 - 2020 \times 2019 + 2021 \times 2022 -2022 \times 2023$
2023中央大学杉並高等学校
佐賀県立高校入試2021年2⃣連立方程式
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2021年2⃣連立方程式
-----------------
A中学校とB中学校の合計45人のバレーボール部員が、3日間の合同練習をすることになった。
練習場所の近くには山と海があり、最終日のレクリエーションの時間にどちらに行きたいか希望調査をしたところ、動画内の表のような結果になった。
ただし、山または海の希望は、45人の部員全員がどちらか一方だけを希望したものとする。
(ア)
2校のバレーボール部員の人数をそれぞれ求めるために、A中学校バレーボール部員の人数を$x$人、B中学校バレーボール部員の人数を$y$人として、あとのような連立方程式をつくった。
このとき、①にあてはまる式と②にあてはまる方程式を、$x,y$を用いてそれぞれ表しなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
① = 45 \\
②
\end{array}
\right.
\end{eqnarray}$
(イ)
A中学校バレーボール部員の人数と、B中学校バレーボール部員の人数をそれぞれ求めなさい。
この動画を見る
佐賀県立高校入試2021年2⃣連立方程式
-----------------
A中学校とB中学校の合計45人のバレーボール部員が、3日間の合同練習をすることになった。
練習場所の近くには山と海があり、最終日のレクリエーションの時間にどちらに行きたいか希望調査をしたところ、動画内の表のような結果になった。
ただし、山または海の希望は、45人の部員全員がどちらか一方だけを希望したものとする。
(ア)
2校のバレーボール部員の人数をそれぞれ求めるために、A中学校バレーボール部員の人数を$x$人、B中学校バレーボール部員の人数を$y$人として、あとのような連立方程式をつくった。
このとき、①にあてはまる式と②にあてはまる方程式を、$x,y$を用いてそれぞれ表しなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
① = 45 \\
②
\end{array}
\right.
\end{eqnarray}$
(イ)
A中学校バレーボール部員の人数と、B中学校バレーボール部員の人数をそれぞれ求めなさい。
【数学】確率の求め方間違っていませんか?確率の前提の話 後編
単元:
#数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
確率の求め方で、間違った数え方していませんか?
確率の計算方法について解説します。
この動画を見る
確率の求め方で、間違った数え方していませんか?
確率の計算方法について解説します。
慣れれば暗算!!
【数学】確率の求め方間違っていませんか?確率の前提の話 前編
単元:
#数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
確率の求め方で、間違った数え方していませんか?
確率の計算方法について解説します。
大小二つのサイコロを振った時、目の合計が3になる確率は?
二つのサイコロを振った時、目の合計が3になる確率は?
答えに違いはある??
この動画を見る
確率の求め方で、間違った数え方していませんか?
確率の計算方法について解説します。
大小二つのサイコロを振った時、目の合計が3になる確率は?
二つのサイコロを振った時、目の合計が3になる確率は?
答えに違いはある??
【中学数学】直角三角形の合同条件~どこよりも分かりやすく~【中2数学】
効率よく計算するための一歩を踏み出す問題~全国入試問題解法 #shorts #数学 #高校入試 #sound
単元:
#計算と数の性質#いろいろな計算#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ 26\times 78\times(-5)^2 $を計算せよ.
広大付属高校過去問
この動画を見る
$ 26\times 78\times(-5)^2 $を計算せよ.
広大付属高校過去問
高等学校入学試験予想問題:洛南高等学校~全部入試問題
単元:
#数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?
$ \boxed{2}$
図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.
$ \boxed{3}$
図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
この動画を見る
$ \boxed{1}$
(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?
$ \boxed{2}$
図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.
$ \boxed{3}$
図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
高校入試の早解きルートを30秒でモノにするショート~全国入試問題解法 #Shorts #数学 #高校入試
単元:
#数学(中学生)#中2数学#中3数学#1次関数#2次関数#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
xの変域が$ o\leqq x \leqq 6 $のとき,yの変域が等しく,この関数のグラフは1点で交わる.
この交点を反比例$ y=\dfrac{c}{x}$のグラフが通るとき,$ c $の値を求めよ.
和洋国府台女子高校過去問
この動画を見る
xの変域が$ o\leqq x \leqq 6 $のとき,yの変域が等しく,この関数のグラフは1点で交わる.
この交点を反比例$ y=\dfrac{c}{x}$のグラフが通るとき,$ c $の値を求めよ.
和洋国府台女子高校過去問
高等学校入学試験予想問題:明治学院高等学校~全部入試問題
単元:
#数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#空間図形#1次関数#2次関数#円#平面図形
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.
$ \boxed{2}$
放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.
$ \boxed{3}$
図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
この動画を見る
$ \boxed{1}$
(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.
$ \boxed{2}$
放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.
$ \boxed{3}$
図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
高等学校入学試験予想問題:近畿大学附属高等学校~全部入試問題
単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#1次関数#2次関数#円
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$ \dfrac{4x-y}{9}-\dfrac{5x-4y}{12}$を計算せよ.
(2)$ xy-3y-3x+9 $を因数分解せよ.
(3)
$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=1 \\
2ax+by=16
\end{array}
\right.
\end{eqnarray}$
$ \begin{eqnarray}
\left\{
\begin{array}{l}
ax+2y=8 \\
-3x+2y=3
\end{array}
\right.
\end{eqnarray}$
が同じ解をもつとき,$ a,b $の値を求めよ.
$ \boxed{2}$
図のように,関数$ y=x^2 $のグラフと直線$ y=-2x+8 $との交点を$ A,B,$直線$AB $の中点を$M$とするとき,次の問いに答えよ.
ただし,点$A$のx座標は負とする.
(1)点$A$の座標を求めよ.
(2)直線$OM$の式を求めよ.
(3)$ \triangle OCM $をx軸のまわりに1回転させてできる立体の体積を求めよ.
$ \boxed{3}$
図のように,点$O$を中心とし,線分$AB$を直径とする半径6の円があり,点$C$は線分$OB$の中点である,2点$D,E$は直径$AB$に対して同じ側の円周上にあり,$AB$と$CD$は直角,$AB$と$OE$は直角となっている.
また,線分$AD$と線分$OE$の交点を点$F$とする.
このとき,次の問いに答えよ.
(1)$CD$の長さを求めよ.
(2)$ \triangle AEF$の面積を求めよ.
(3)$ AF:AD$の比を求めよ.また,$\triangle DEF $の面積を求めよ.
この動画を見る
$ \boxed{1}$
(1)$ \dfrac{4x-y}{9}-\dfrac{5x-4y}{12}$を計算せよ.
(2)$ xy-3y-3x+9 $を因数分解せよ.
(3)
$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=1 \\
2ax+by=16
\end{array}
\right.
\end{eqnarray}$
$ \begin{eqnarray}
\left\{
\begin{array}{l}
ax+2y=8 \\
-3x+2y=3
\end{array}
\right.
\end{eqnarray}$
が同じ解をもつとき,$ a,b $の値を求めよ.
$ \boxed{2}$
図のように,関数$ y=x^2 $のグラフと直線$ y=-2x+8 $との交点を$ A,B,$直線$AB $の中点を$M$とするとき,次の問いに答えよ.
ただし,点$A$のx座標は負とする.
(1)点$A$の座標を求めよ.
(2)直線$OM$の式を求めよ.
(3)$ \triangle OCM $をx軸のまわりに1回転させてできる立体の体積を求めよ.
$ \boxed{3}$
図のように,点$O$を中心とし,線分$AB$を直径とする半径6の円があり,点$C$は線分$OB$の中点である,2点$D,E$は直径$AB$に対して同じ側の円周上にあり,$AB$と$CD$は直角,$AB$と$OE$は直角となっている.
また,線分$AD$と線分$OE$の交点を点$F$とする.
このとき,次の問いに答えよ.
(1)$CD$の長さを求めよ.
(2)$ \triangle AEF$の面積を求めよ.
(3)$ AF:AD$の比を求めよ.また,$\triangle DEF $の面積を求めよ.
切ない気持ちになった分だけ計算が得意になるキラキラ~全国入試問題解法 #shorts #数学 #高校入試 #sound
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ -144a^4b^2c^3\div(-6a^3b^2c^2)^3\times \left(-\dfrac{3}{2}a^3b^2c\right)^2$を計算しなさい.
江戸川取手高校過去問
この動画を見る
$ -144a^4b^2c^3\div(-6a^3b^2c^2)^3\times \left(-\dfrac{3}{2}a^3b^2c\right)^2$を計算しなさい.
江戸川取手高校過去問
2023灘中最初の一問
単元:
#算数(中学受験)#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#過去問解説(学校別)
指導講師:
数学を数楽に
問題文全文(内容文):
$2023 \times (\frac{1}{14} - \frac{1}{15}) \times \frac{1}{17} \times \frac{1}{17}
= 1 \div (81 -?)$
2023灘中学校
この動画を見る
$2023 \times (\frac{1}{14} - \frac{1}{15}) \times \frac{1}{17} \times \frac{1}{17}
= 1 \div (81 -?)$
2023灘中学校
佐賀県立高校入試2022年数学2⃣連立方程式
単元:
#数学(中学生)#中2数学#連立方程式#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2022年数学2⃣連立方程式
-----------------
(ア)
DVDを借りる枚数について、①にあてはまる式を$x$、$y$を用いて表しなさい。
①=20
(イ)
料金の合計について、②にあてはまる式を$x$、$y$を用いて表しなさい。
準新作のDVDを借りる枚数が4枚以下のとき、②=2200
(ウ)
料金の合計について、③にあてはまる式を$x$、$y$を用いて表しなさい。
準新作のDVDを借りる枚数が5枚以上のとき。③=2200
(エ)
準新作のDVDを借りる枚数を求めなさい。
この動画を見る
佐賀県立高校入試2022年数学2⃣連立方程式
-----------------
(ア)
DVDを借りる枚数について、①にあてはまる式を$x$、$y$を用いて表しなさい。
①=20
(イ)
料金の合計について、②にあてはまる式を$x$、$y$を用いて表しなさい。
準新作のDVDを借りる枚数が4枚以下のとき、②=2200
(ウ)
料金の合計について、③にあてはまる式を$x$、$y$を用いて表しなさい。
準新作のDVDを借りる枚数が5枚以上のとき。③=2200
(エ)
準新作のDVDを借りる枚数を求めなさい。
佐賀県立高校入試2022年数学3⃣確率
単元:
#数学(中学生)#中2数学#確率#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2022年数学3⃣確率
-----------------
(ア)
この箱から1本のくじをひくとき、2等のあたりくじである確率を求めなさい。
(イ)
この箱から同時に2本のくじをひくとき、2本とも2等のあたりくじである確率を求めなさい。
(ウ)
この箱から同時に2本のくじをひくとき、1本はあたりくじで、もう1本ははずれくじである確率を求めなさい。
(エ)
この箱から同時に2本のくじをひくとき、少なくとも1本はあたりくじである確率を求めなさい。
この動画を見る
佐賀県立高校入試2022年数学3⃣確率
-----------------
(ア)
この箱から1本のくじをひくとき、2等のあたりくじである確率を求めなさい。
(イ)
この箱から同時に2本のくじをひくとき、2本とも2等のあたりくじである確率を求めなさい。
(ウ)
この箱から同時に2本のくじをひくとき、1本はあたりくじで、もう1本ははずれくじである確率を求めなさい。
(エ)
この箱から同時に2本のくじをひくとき、少なくとも1本はあたりくじである確率を求めなさい。
【見た目以上に難しい!?】連立方程式:ラ・サール高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x-\dfrac{1}{2}(y+1)=1 \\
\dfrac{1}{3}(x+1)+\dfrac{3}{4}(y-1)=9
\end{array}
\right.
\end{eqnarray}$
この連立方程式を解け.
ラサール高校過去問
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x-\dfrac{1}{2}(y+1)=1 \\
\dfrac{1}{3}(x+1)+\dfrac{3}{4}(y-1)=9
\end{array}
\right.
\end{eqnarray}$
この連立方程式を解け.
ラサール高校過去問
2023高校入試解説20問目 比例と反比例と四角形 別解はコメント欄に。城北埼玉
単元:
#数学(中学生)#中1数学#中2数学#比例・反比例#三角形と四角形#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
四角形ACBD=100
a=?
*図は動画内参照
2023城北埼玉高等学校
この動画を見る
四角形ACBD=100
a=?
*図は動画内参照
2023城北埼玉高等学校
数学の概要を一気につかむ音楽~全国入試問題解法 #shorts #数学 #高校入試 #sound
単元:
#数学(中学生)#中2数学#中3数学#2次方程式#三角形と四角形#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ t^2-(4t-1)x+4t^2-2t=0$の2解を$ \alpha,\beta$とすぅる.
3辺の長さが,$5,\alpha,\beta$である三角形が直角三角形である.
$t$の値を求めよ.
慶応志木高校過去問
この動画を見る
$ t^2-(4t-1)x+4t^2-2t=0$の2解を$ \alpha,\beta$とすぅる.
3辺の長さが,$5,\alpha,\beta$である三角形が直角三角形である.
$t$の値を求めよ.
慶応志木高校過去問
2023灘中最初の一問 計算
単元:
#算数(中学受験)#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#過去問解説(学校別)
指導講師:
数学を数楽に
問題文全文(内容文):
$2023 \times (\frac{1}{14} - \frac{1}{15}) \times \frac{1}{17} \times \frac{1}{17}$
= $1 \div (81-?)$
2023灘中学校
この動画を見る
$2023 \times (\frac{1}{14} - \frac{1}{15}) \times \frac{1}{17} \times \frac{1}{17}$
= $1 \div (81-?)$
2023灘中学校
高校入試じゃないよ 中学入試だよ 2023西大和学園中
単元:
#算数(中学受験)#数学(中学生)#中2数学#過去問解説(学校別)#三角形と四角形
指導講師:
数学を数楽に
問題文全文(内容文):
△ABCは正三角形
$\angle$アは何度?
*図は動画内参照
2023西大和学園中学校
この動画を見る
△ABCは正三角形
$\angle$アは何度?
*図は動画内参照
2023西大和学園中学校
2023高校入試解説2問目 文字でおけ! 早稲田佐賀
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$2023 \times 108 -2022 \times 110 +4046 -54$
2023早稲田佐賀高等学校
この動画を見る
$2023 \times 108 -2022 \times 110 +4046 -54$
2023早稲田佐賀高等学校
おうぎ形と三角形の面積は求め方が同じ??
東海高校 ただの連立方程式だけど‥‥
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師:
鈴木貫太郎
問題文全文(内容文):
連立方程式を解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
(\sqrt5-1)x+y=\sqrt5-1 \\
x+(\sqrt5+1)y=\sqrt5+1
\end{array}
\right.
\end{eqnarray}$
東海高校過去問
この動画を見る
連立方程式を解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
(\sqrt5-1)x+y=\sqrt5-1 \\
x+(\sqrt5+1)y=\sqrt5+1
\end{array}
\right.
\end{eqnarray}$
東海高校過去問
福田の1.5倍速演習〜合格する重要問題050〜一橋大学2017年度文系第2問〜連立方程式の整数解
単元:
#連立方程式#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 連立方程式$\\$
$\left\{\begin{array}{1}
x^2=yz+7\\
y^2=zx+7\\
z^2=xy+7\\
\end{array}\right.\\$
を満たす整数の組(x,y,z)でx $\leqq$ y $\leqq$ zとなるものを求めよ。
2017一橋大学文系過去問
この動画を見る
$\Large{\boxed{2}}$ 連立方程式$\\$
$\left\{\begin{array}{1}
x^2=yz+7\\
y^2=zx+7\\
z^2=xy+7\\
\end{array}\right.\\$
を満たす整数の組(x,y,z)でx $\leqq$ y $\leqq$ zとなるものを求めよ。
2017一橋大学文系過去問
【中学数学】確率の入試対策~2022年度三重県公立高校入試~【高校受験】
🎍西暦"2023"を含む入試予想問題(その1)~全国入試問題解法
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ 2023\times2021-2020^2-2022\times2025+2021^2+2022$を計算せよ.
この動画を見る
$ 2023\times2021-2020^2-2022\times2025+2021^2+2022$を計算せよ.
【最初の2分間が全て!今年の的中問題】図形:高知県公立高等学校~全国入試問題解法
単元:
#数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
平行四辺形$ABCD$の点$E$は辺$AD$上で$AE:ED=1:2$である.
点$F$は辺$BC$上で$BE$と$FD$は平行である.
交点$G$は線分$AC$と線分$BE$の交点であり,交点$H$は線分$AC$と線分$FD$の交点である.
$ \triangle ABG \equiv CDH$を証明しなさい.
高知県高校過去問
この動画を見る
平行四辺形$ABCD$の点$E$は辺$AD$上で$AE:ED=1:2$である.
点$F$は辺$BC$上で$BE$と$FD$は平行である.
交点$G$は線分$AC$と線分$BE$の交点であり,交点$H$は線分$AC$と線分$FD$の交点である.
$ \triangle ABG \equiv CDH$を証明しなさい.
高知県高校過去問
いろいろな四角形 暁
単元:
#数学(中学生)#中2数学#三角形と四角形
指導講師:
数学を数楽に
問題文全文(内容文):
四角形の性質について正しいものを1つ選べ。
⓪4つの角がすべて等しい四角形は正方形である。
①対角線が垂直に交わる四角形は長方形である。
②対角線の長さが等しい四角形は長方形である。
③対角線がそれぞれの中点で交わる四角形は平行四辺形である。
暁高等学校
この動画を見る
四角形の性質について正しいものを1つ選べ。
⓪4つの角がすべて等しい四角形は正方形である。
①対角線が垂直に交わる四角形は長方形である。
②対角線の長さが等しい四角形は長方形である。
③対角線がそれぞれの中点で交わる四角形は平行四辺形である。
暁高等学校
【一本道が見えますか】連立方程式:巣鴨高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2つの連立方程式
$ \begin{eqnarray}
\left\{
\begin{array}{l}
3x + 2y = 14 \\
ax + by = 3
\end{array}
\right.
\end{eqnarray}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
bx -ay = -5 \\
4x-5y = 11
\end{array}
\right.
\end{eqnarray}$
の解が一致するとき$a,b$の値をそれぞれ求めなさい.
巣鴨高校過去問
この動画を見る
2つの連立方程式
$ \begin{eqnarray}
\left\{
\begin{array}{l}
3x + 2y = 14 \\
ax + by = 3
\end{array}
\right.
\end{eqnarray}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
bx -ay = -5 \\
4x-5y = 11
\end{array}
\right.
\end{eqnarray}$
の解が一致するとき$a,b$の値をそれぞれ求めなさい.
巣鴨高校過去問