平方根
動体視力と数学を鍛える30秒の誘い(いざない)~全国入試問題解法 #Shorts
単元:
#数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$(\sqrt3+\sqrt5)^2$の小数部分を$x$とするとき,
$x^2+14x$の値を求めよ.
慶応志木高校過去問
この動画を見る
$(\sqrt3+\sqrt5)^2$の小数部分を$x$とするとき,
$x^2+14x$の値を求めよ.
慶応志木高校過去問
これできた?
これ分かる?
これ解ける?
単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\sqrt{ 2022 \sqrt{ 2021 \times 2019 + 1 + 1 } }$
値を求めよ
この動画を見る
$\sqrt{ 2022 \sqrt{ 2021 \times 2019 + 1 + 1 } }$
値を求めよ
平方根の計算 城北高校 2022年入試問題解説52問目
単元:
#数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{2023 \times 2021 - 4044 +2}$
2022城北高等学校
この動画を見る
$\sqrt{2023 \times 2021 - 4044 +2}$
2022城北高等学校
令和4年度 灘高校の最初の一問 2022年入試問題解説47問目
単元:
#数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\sqrt {2022} + \sqrt {77})^2
-2(\sqrt {2022} + \sqrt {77})(\sqrt {2022} - 1)
+2(\sqrt {2022} - \sqrt {77})(\sqrt {2022} - 1)
-(\sqrt {2022} - \sqrt {77})^2
$
2022灘高等学校
この動画を見る
$(\sqrt {2022} + \sqrt {77})^2
-2(\sqrt {2022} + \sqrt {77})(\sqrt {2022} - 1)
+2(\sqrt {2022} - \sqrt {77})(\sqrt {2022} - 1)
-(\sqrt {2022} - \sqrt {77})^2
$
2022灘高等学校
平方根の計算 香川誠陵 2022入試問題解説 22問目
単元:
#数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
計算せよ
$(\frac{2}{\sqrt 2} + \frac{3}{\sqrt 3}) \times (\sqrt {18} - \sqrt {12})$
2022香川誠陵高等学校
この動画を見る
計算せよ
$(\frac{2}{\sqrt 2} + \frac{3}{\sqrt 3}) \times (\sqrt {18} - \sqrt {12})$
2022香川誠陵高等学校
ルートの傾き 西武文理 2022入試問題解説19問目
【高校受験対策/数学】死守-97
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#相似な図形#円#文字と式#平面図形#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守97
①$5-(-7)$を計算しなさい。
➁$\sqrt{ 27 }+\sqrt{ 12 }$を計算しなさい。
③$(\sqrt{ 2 }-1)^2$を計算しなさい。
④連立方程式を解きなさい。
$2x-3y=-4$
$x+2y=5$
⑤二次方程式$3x^2+7x+1=0$を解きなさい。
⑥相似な2つの立体$F,G$がある。
$F$と$G$の相似比が$3:5$であり、$F$の体積が$81\pi$$cm^3$のとき、$G$の体積を求めなさい。
⑦右の図のように、4点$A,B,C,D$が線分$BC$を直径とする 同じ円周上にあるとき、
$\angle ADB$の大きさを求めなさい。
⑧右下の図のような線分$OA$がある。
$\angle AOB=30°,OA=OB$となる二等辺三角形$OAB$を作図しなさい。
また点$B$の位置を示す文字$B$も図の中に書き入れなさい。
ただし、作図には定規とコンパスを用い、作図に用いた線は消えずに残しておくこと。
この動画を見る
高校受験対策・死守97
①$5-(-7)$を計算しなさい。
➁$\sqrt{ 27 }+\sqrt{ 12 }$を計算しなさい。
③$(\sqrt{ 2 }-1)^2$を計算しなさい。
④連立方程式を解きなさい。
$2x-3y=-4$
$x+2y=5$
⑤二次方程式$3x^2+7x+1=0$を解きなさい。
⑥相似な2つの立体$F,G$がある。
$F$と$G$の相似比が$3:5$であり、$F$の体積が$81\pi$$cm^3$のとき、$G$の体積を求めなさい。
⑦右の図のように、4点$A,B,C,D$が線分$BC$を直径とする 同じ円周上にあるとき、
$\angle ADB$の大きさを求めなさい。
⑧右下の図のような線分$OA$がある。
$\angle AOB=30°,OA=OB$となる二等辺三角形$OAB$を作図しなさい。
また点$B$の位置を示す文字$B$も図の中に書き入れなさい。
ただし、作図には定規とコンパスを用い、作図に用いた線は消えずに残しておくこと。
【高校受験対策/数学】死守-95
単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$2-(-5)-9$を計算せよ。
②$\frac{3x-y}{4}-\frac{x+2y}{3}$を計算せよ。
③$a^2b×(-3b)÷6ab^2$を計算せよ。
④$\frac{12}{\sqrt2}-\sqrt32$を計算せよ 。
⑤50本の鉛筆を、7人の生徒に1人$a$本ずつ配ると、$b$本余った。
このとき、$b$を$a$の式で表せ。
⑥2次方程式$(x-4)(x+2)=3x-2$を解け。
⑦$a$は正の数とする。
次の文字式のうち、式の値が$a$の値よりも小さくなる文字式はどれか。
次のアーエからすべて選び、その記号で書け。
ア $a+(-\frac{1}{2})$
イ $a-(-\frac{1}{2})$
ウ $a×(-\frac{1}{2})$
エ $a÷(-\frac{1}{2})$
⑧関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq -1$のとき、
$y$の変域は$-3 \leqq y \leqq 12$である。このときの$a$の値を求めよ。
⑨右の図のように、2つの半直線$AB,AC$があり、半直線$AB$上に点$D$をとる。
2つの半直線$AB,AC$の両方に接する円のうち、 点$D$で半直線$AB$と接する円の中心$P$を定規・コンパスを使い作図によって求めよ。
この動画を見る
①$2-(-5)-9$を計算せよ。
②$\frac{3x-y}{4}-\frac{x+2y}{3}$を計算せよ。
③$a^2b×(-3b)÷6ab^2$を計算せよ。
④$\frac{12}{\sqrt2}-\sqrt32$を計算せよ 。
⑤50本の鉛筆を、7人の生徒に1人$a$本ずつ配ると、$b$本余った。
このとき、$b$を$a$の式で表せ。
⑥2次方程式$(x-4)(x+2)=3x-2$を解け。
⑦$a$は正の数とする。
次の文字式のうち、式の値が$a$の値よりも小さくなる文字式はどれか。
次のアーエからすべて選び、その記号で書け。
ア $a+(-\frac{1}{2})$
イ $a-(-\frac{1}{2})$
ウ $a×(-\frac{1}{2})$
エ $a÷(-\frac{1}{2})$
⑧関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq -1$のとき、
$y$の変域は$-3 \leqq y \leqq 12$である。このときの$a$の値を求めよ。
⑨右の図のように、2つの半直線$AB,AC$があり、半直線$AB$上に点$D$をとる。
2つの半直線$AB,AC$の両方に接する円のうち、 点$D$で半直線$AB$と接する円の中心$P$を定規・コンパスを使い作図によって求めよ。
ルートが入っている2次方程式 2通りで解説
こう見えても慶應義塾
単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数A#数と式#場合の数と確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
絶対値が2になる数と49の平方根の和は何通り?
慶應義塾高等学校
この動画を見る
絶対値が2になる数と49の平方根の和は何通り?
慶應義塾高等学校
【高校受験対策/数学】死守-94
単元:
#数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#空間図形#文字と式#標本調査
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守94
①$(-3)×5$を計算せよ。
②$\frac{x}{2}-2+(\frac{x}{5}-1)$を計算せよ。
③$24xy^2÷(-8xy)×2x$を計算せよ。
④$(\sqrt{3}+\sqrt{2})(2\sqrt{3}+\sqrt{2})+\frac{6}{\sqrt{6}}$を計算せよ。
⑤$(x-3)^2-(x+4)(x-4)$を計算せよ。
⑥$x^2-8x+12$を因数分解せよ。
⑦右の図のように、底面が正方形BCDEである正四角すいABCDEがある。
このとき、直線BCとねじれの位置にある直線をすべて書きなさい。
⑧気温は、高度が100$m$増すごとに0.6℃ずつ低くなる。
地上の気温が7.6℃のとき、地上から2000m上空の気温は何℃か求めよ。
⑨下の表は、あるクラスの13人のハンドボール投げの記録を、大きさの順に並べたものである。
この13人と太郎さんを合わせた14人の記録の中央値は、太郎さんを合わせる前の13人の記録の中央値と比べて、1$m$大きい。
このとき太郎さんの記録は何$m$か求めよ。
この動画を見る
高校受験対策・死守94
①$(-3)×5$を計算せよ。
②$\frac{x}{2}-2+(\frac{x}{5}-1)$を計算せよ。
③$24xy^2÷(-8xy)×2x$を計算せよ。
④$(\sqrt{3}+\sqrt{2})(2\sqrt{3}+\sqrt{2})+\frac{6}{\sqrt{6}}$を計算せよ。
⑤$(x-3)^2-(x+4)(x-4)$を計算せよ。
⑥$x^2-8x+12$を因数分解せよ。
⑦右の図のように、底面が正方形BCDEである正四角すいABCDEがある。
このとき、直線BCとねじれの位置にある直線をすべて書きなさい。
⑧気温は、高度が100$m$増すごとに0.6℃ずつ低くなる。
地上の気温が7.6℃のとき、地上から2000m上空の気温は何℃か求めよ。
⑨下の表は、あるクラスの13人のハンドボール投げの記録を、大きさの順に並べたものである。
この13人と太郎さんを合わせた14人の記録の中央値は、太郎さんを合わせる前の13人の記録の中央値と比べて、1$m$大きい。
このとき太郎さんの記録は何$m$か求めよ。
【高校受験対策/数学】死守-93
単元:
#数学(中学生)#中1数学#正の数・負の数#方程式#式の計算(展開、因数分解)#平方根#2次方程式#確率#文字と式#標本調査
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守93
①$2-(-5)-4$を計算せよ。
➁$3÷\frac{1}{4}×(-2^2)$を計算せよ。
③等式$3(4x-y)=6$を$y$について解け。
④$\sqrt{12}-\frac{9}{\sqrt{3}}$を計算せよ。
⑤$xy-6x+y-6$を 因数分解せよ。
⑥二次方程式$x^2+5x+2=0$を解け。
⑦右の表は、ある学級の生徒10人について、通学距離を調べて度数分布表に整理したものである。
この表からこの10人の通学距離の平均値を求めると何$km$になるか。
⑧次のア~ウの数の絶対値が、小さい順に左から右に並ぶように記号ア~ウを用いて書け。
ア $-3$
イ $0$
ウ $2$
⑨数字を書いた5枚のカード1、1、2、3、4がある。
この5枚のカードをよくきって、その中からもとにもどさずに続けて2枚を取り出し、
はじめに取り出したカードに書いてある数を$a$、次に取り出したカードに書いてある数を$b$とする。
このとき、$a \geqq b$になる確率を求めよ。
この動画を見る
高校受験対策・死守93
①$2-(-5)-4$を計算せよ。
➁$3÷\frac{1}{4}×(-2^2)$を計算せよ。
③等式$3(4x-y)=6$を$y$について解け。
④$\sqrt{12}-\frac{9}{\sqrt{3}}$を計算せよ。
⑤$xy-6x+y-6$を 因数分解せよ。
⑥二次方程式$x^2+5x+2=0$を解け。
⑦右の表は、ある学級の生徒10人について、通学距離を調べて度数分布表に整理したものである。
この表からこの10人の通学距離の平均値を求めると何$km$になるか。
⑧次のア~ウの数の絶対値が、小さい順に左から右に並ぶように記号ア~ウを用いて書け。
ア $-3$
イ $0$
ウ $2$
⑨数字を書いた5枚のカード1、1、2、3、4がある。
この5枚のカードをよくきって、その中からもとにもどさずに続けて2枚を取り出し、
はじめに取り出したカードに書いてある数を$a$、次に取り出したカードに書いてある数を$b$とする。
このとき、$a \geqq b$になる確率を求めよ。
この問題は嫌いです 慶應義塾
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$(1-\sqrt 6)^2 - (\sqrt 2 - \sqrt 3)^2$
慶應義塾高等学校
この動画を見る
$(1-\sqrt 6)^2 - (\sqrt 2 - \sqrt 3)^2$
慶應義塾高等学校
【高校受験対策/数学】死守-92
単元:
#数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#平面図形#標本調査
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守92
①$12÷(-4)$を計算しなさい。
②$\sqrt{3}×\sqrt{8}$を計算しなさい。
③$(x-4)(x-5)$を展開しなさい。
④二次方程式$x^2-5x+3=0$を解きなさい。
⑤$\frac{336}{n}$の値が、ある自然数の2乗となるような自然数$n$のうち、
最も小さいものを求めなさい。
⑥右の表は、ある中学校の生徒30人が1か月に読んだ本の冊数を調べて、度数分布表に整理 したものである。
ただし、一部が汚れて度数が見えなくなっている。
この度数分布表について、3冊以上6冊未満の階級の相対度数を求めなさい。
⑦右の図のように、五角形$ABCDE$があり、$\angle BCD=105°,$$\angle CDE=110°$である。
また、頂点$A,E$における外角$B$の大きさがそれぞれ$70°,80°$であるとき、
$\angle ABC$の大きさを求めなさい。
⑧二次関数$y=\frac{5}{2}x+a$のグラフは点$(4,3)$を通る。
このグラフと$y$軸との交点の座標を求めなさい。
この動画を見る
高校受験対策・死守92
①$12÷(-4)$を計算しなさい。
②$\sqrt{3}×\sqrt{8}$を計算しなさい。
③$(x-4)(x-5)$を展開しなさい。
④二次方程式$x^2-5x+3=0$を解きなさい。
⑤$\frac{336}{n}$の値が、ある自然数の2乗となるような自然数$n$のうち、
最も小さいものを求めなさい。
⑥右の表は、ある中学校の生徒30人が1か月に読んだ本の冊数を調べて、度数分布表に整理 したものである。
ただし、一部が汚れて度数が見えなくなっている。
この度数分布表について、3冊以上6冊未満の階級の相対度数を求めなさい。
⑦右の図のように、五角形$ABCDE$があり、$\angle BCD=105°,$$\angle CDE=110°$である。
また、頂点$A,E$における外角$B$の大きさがそれぞれ$70°,80°$であるとき、
$\angle ABC$の大きさを求めなさい。
⑧二次関数$y=\frac{5}{2}x+a$のグラフは点$(4,3)$を通る。
このグラフと$y$軸との交点の座標を求めなさい。
2次方程式の応用 明大明治
単元:
#数学(中学生)#中3数学#平方根#2次方程式#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
2次方程式$x^2-6x+p=0$の2つの解の差が$2 \sqrt 3$のとき
p=?
明治大学付属明治高等学校
この動画を見る
2次方程式$x^2-6x+p=0$の2つの解の差が$2 \sqrt 3$のとき
p=?
明治大学付属明治高等学校
【高校受験対策/数学】死守-91
単元:
#数学(中学生)#中1数学#正の数・負の数#平方根#比例・反比例#空間図形#2次関数#文字と式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守91
①$-7+9$を計算しなさい。
②$\frac{15}{2}×(-\frac{4}{5})$を計算しなさい。
③$3(2x-y)+4(x+3y)$を 計算しなさい。
④$y$は$x$に反比例し、$x=3$のとき$y=2$である。
$y$を$x$の式で表しなさい。
⑤14の平方根うち、正数の数であるものを答えなさい。
⑥底面が1辺$6cm$の正方形で、体積が$96cm^3$である四角すいの高さを求めなさい。
⑦2つの整数$m,n$について、計算の結果がいつも整数になるとは限らないものを、
次のア~エから1つ選び、記号で答えなさい。
ア $m+n$
イ $m-n$
ウ $m×n$
エ $m÷n$
⑧関数$y=-\frac{3}{4}x^2$について、
次のア~エのうち、正しいものを2つ選び記号で 答えなさい。
ア 変化の割合は一定ではない。
イ $x$の値がどのように変化しても、その値が増加することはない。
ウ $x$がどのような値でも、$y$の値は負の数である。
エ グラフの開き方は関数$y=x^2$のグラフより大きい。
この動画を見る
高校受験対策・死守91
①$-7+9$を計算しなさい。
②$\frac{15}{2}×(-\frac{4}{5})$を計算しなさい。
③$3(2x-y)+4(x+3y)$を 計算しなさい。
④$y$は$x$に反比例し、$x=3$のとき$y=2$である。
$y$を$x$の式で表しなさい。
⑤14の平方根うち、正数の数であるものを答えなさい。
⑥底面が1辺$6cm$の正方形で、体積が$96cm^3$である四角すいの高さを求めなさい。
⑦2つの整数$m,n$について、計算の結果がいつも整数になるとは限らないものを、
次のア~エから1つ選び、記号で答えなさい。
ア $m+n$
イ $m-n$
ウ $m×n$
エ $m÷n$
⑧関数$y=-\frac{3}{4}x^2$について、
次のア~エのうち、正しいものを2つ選び記号で 答えなさい。
ア 変化の割合は一定ではない。
イ $x$の値がどのように変化しても、その値が増加することはない。
ウ $x$がどのような値でも、$y$の値は負の数である。
エ グラフの開き方は関数$y=x^2$のグラフより大きい。
数学を数楽にして解く 2通りで解説 専修大学松戸
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{14}(\sqrt{28}+4)(\sqrt{14} - \sqrt 8)$
専修大学松戸高等学校
この動画を見る
$\sqrt{14}(\sqrt{28}+4)(\sqrt{14} - \sqrt 8)$
専修大学松戸高等学校
【高校受験対策/数学】死守63
単元:
#数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#平方根#2次方程式#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守63
①
下の図1は、ある都市のある日の天気と気温であり、表示の気温は最高気温と最低気温を表している。
また、[ ]の中の数はある日の最高気温と最低気温が、前日の最高気温と最低気温に比べて何℃高いかを表している。
このときこの都市の前日の最低気温を求めなさい。
※図は動画参照
➁
右上の図2の正方形の面積は50c㎡である。このとき、正方形の1辺の長さを求めなさい。
ただし、根号の中の数はできるだけ小さい自然数にすること。
③
1枚$a$ gの封筒に、1枚$b$ gの便せんを5枚入れて重さをはかったところ、60gより重かった。
この数量の関係を不等式で表しなさい。
④
ある店で、ポロシャツとトレーナーを1着ずつ定価で買うと、代金の合計は6300円である。
今日はポロシャツが定価の2割引き、トレーナーが定価より800円安くなっていたため、それぞれ1着ずう買うと、代金の合計は5000円になるという。
このとき、ポロシャツとトレーナーの定価をそれぞれ求めなさい。
ただし、消費税は考えないものとする。
⑤
下の図のように、正五角形ABCDEがあり、点Pは はじめに頂点Aの位置にある。
1から6までの目のある2個のさいころを同時に1回投げて、出た目の数の和だけ、点Pは左回りに頂点を順に1つずつ 移動する。
例えば、2個のさいころの出た目の数の和が3のときは、点Pは頂点Dの位置に移動する。
2個のさいころを同時に1回投げるとき、 点Pが頂点Eの位置に移動する確率を求めなさい。
ただし、それぞれのさいころにおいて、1から6までのどの目が出ることも同様に確からしいとする。
この動画を見る
高校受験対策・死守63
①
下の図1は、ある都市のある日の天気と気温であり、表示の気温は最高気温と最低気温を表している。
また、[ ]の中の数はある日の最高気温と最低気温が、前日の最高気温と最低気温に比べて何℃高いかを表している。
このときこの都市の前日の最低気温を求めなさい。
※図は動画参照
➁
右上の図2の正方形の面積は50c㎡である。このとき、正方形の1辺の長さを求めなさい。
ただし、根号の中の数はできるだけ小さい自然数にすること。
③
1枚$a$ gの封筒に、1枚$b$ gの便せんを5枚入れて重さをはかったところ、60gより重かった。
この数量の関係を不等式で表しなさい。
④
ある店で、ポロシャツとトレーナーを1着ずつ定価で買うと、代金の合計は6300円である。
今日はポロシャツが定価の2割引き、トレーナーが定価より800円安くなっていたため、それぞれ1着ずう買うと、代金の合計は5000円になるという。
このとき、ポロシャツとトレーナーの定価をそれぞれ求めなさい。
ただし、消費税は考えないものとする。
⑤
下の図のように、正五角形ABCDEがあり、点Pは はじめに頂点Aの位置にある。
1から6までの目のある2個のさいころを同時に1回投げて、出た目の数の和だけ、点Pは左回りに頂点を順に1つずつ 移動する。
例えば、2個のさいころの出た目の数の和が3のときは、点Pは頂点Dの位置に移動する。
2個のさいころを同時に1回投げるとき、 点Pが頂点Eの位置に移動する確率を求めなさい。
ただし、それぞれのさいころにおいて、1から6までのどの目が出ることも同様に確からしいとする。
【高校受験対策/数学】死守-90
単元:
#数学(中学生)#中1数学#正の数・負の数#方程式#平方根#2次方程式#確率#2次関数#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守90
①$6-5-(-2)$を計算しなさい。
②$a=4$のとき、$6a^2÷3a$の値を求めなさい。
③$\sqrt{2}×\sqrt{6}×\frac{9}{\sqrt{3}}$を計算しなさい。
④方程式$x^2+5x-6=0$を解きなさい。
⑤2点$A(1,7)$、$B(3,2)$の間の距離を求めなさい。
⑥$4 \lt \sqrt{a}\lt \frac{13}{3}$に当てはまる整数$a$の値をすべて求めなさい。
⑦右の図の①~④の放物線は、下のア~エの関数のグラフです。
①と④はそれぞれどの関数のグラフですか。
ア~エの中から選びその記号をそれぞれ書きなさい。
ア $y=x^2$
イ $y=\frac{1}{3}x^2$
ウ $y=2x^2$
エ $y=-\frac{1}{2}x^2$
⑧数字を書いた4枚のカード①、②、③、④が袋Aの中に、
数字を書いた3枚のカード①、②、③が袋Bの中に入っています。
それぞれの袋からカードを1枚ずつ取り出すとき、
その2枚のカードに書いてある数の和が6以上になる確率を求めなさい。
この動画を見る
高校受験対策・死守90
①$6-5-(-2)$を計算しなさい。
②$a=4$のとき、$6a^2÷3a$の値を求めなさい。
③$\sqrt{2}×\sqrt{6}×\frac{9}{\sqrt{3}}$を計算しなさい。
④方程式$x^2+5x-6=0$を解きなさい。
⑤2点$A(1,7)$、$B(3,2)$の間の距離を求めなさい。
⑥$4 \lt \sqrt{a}\lt \frac{13}{3}$に当てはまる整数$a$の値をすべて求めなさい。
⑦右の図の①~④の放物線は、下のア~エの関数のグラフです。
①と④はそれぞれどの関数のグラフですか。
ア~エの中から選びその記号をそれぞれ書きなさい。
ア $y=x^2$
イ $y=\frac{1}{3}x^2$
ウ $y=2x^2$
エ $y=-\frac{1}{2}x^2$
⑧数字を書いた4枚のカード①、②、③、④が袋Aの中に、
数字を書いた3枚のカード①、②、③が袋Bの中に入っています。
それぞれの袋からカードを1枚ずつ取り出すとき、
その2枚のカードに書いてある数の和が6以上になる確率を求めなさい。
【高校受験対策/数学】死守-89
単元:
#数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#空間図形#確率#2次関数#円#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守89
①$-3-(-7)$を計算しなさい。
②$8-(-3)^2$を計算しなさい。
③$(-9ab^2)×2a÷(-3ab)$を計算しなさい。
④$(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})$を計算しなさい。
⑤$x^2-3x-18$を因数分解しなさい。
⑥絶対値が$4$より小さい整数の個数を求めなさい。
⑦右の図のア~ウは、関数$y=-2x^2、y=x^2$および$y=\frac{1}{2}x^2$のグラフを同じ座標軸を使ってかいたものです。
$y=x^2$のグラフをア~ウから一つ選びなさい。
⑧右の図のような、半径$5cm$、中心角$90°$のおうぎ形$OAB$があります。
このおうぎ形を直線$OA$を回転の軸として1回転させてできる立体の体積を求めなさい。
⑨大小2つのさいころを同時に投げるとき、出る目の数の和がちょうど$5$以下となる確率を求めなさい。
ただしさいころの$1$から$6$までの目の出方は同様に確からしいものとします。
この動画を見る
高校受験対策・死守89
①$-3-(-7)$を計算しなさい。
②$8-(-3)^2$を計算しなさい。
③$(-9ab^2)×2a÷(-3ab)$を計算しなさい。
④$(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})$を計算しなさい。
⑤$x^2-3x-18$を因数分解しなさい。
⑥絶対値が$4$より小さい整数の個数を求めなさい。
⑦右の図のア~ウは、関数$y=-2x^2、y=x^2$および$y=\frac{1}{2}x^2$のグラフを同じ座標軸を使ってかいたものです。
$y=x^2$のグラフをア~ウから一つ選びなさい。
⑧右の図のような、半径$5cm$、中心角$90°$のおうぎ形$OAB$があります。
このおうぎ形を直線$OA$を回転の軸として1回転させてできる立体の体積を求めなさい。
⑨大小2つのさいころを同時に投げるとき、出る目の数の和がちょうど$5$以下となる確率を求めなさい。
ただしさいころの$1$から$6$までの目の出方は同様に確からしいものとします。
平方根 小数部分 成城学園
単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$2 \sqrt 3$の小数部分をaとするとき
$a^2+6a-16=?$
成城学園高等学校
この動画を見る
$2 \sqrt 3$の小数部分をaとするとき
$a^2+6a-16=?$
成城学園高等学校
【高校受験対策/数学】死守-88
単元:
#数学(中学生)#中1数学#正の数・負の数#平方根#比例・反比例#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守88
①方程式$x^2+8x+12=0$を解きなさい。
②次のア~エの数の中で絶対値が最も大きいものを1つ選び、記号で答えなさい。
ア $2$
イ $\sqrt{3}$
ウ $-\frac{7}{3}$
エ $0$
③100gあたり$a$円の牛肉を300gと、100gあたり$b$円の豚肉を500g買ったときの代金の合計が1685円だった。
この数量の関係を等式で表しなさい。
ただし、すべての金額は消費税を含んでいるものとする。
④$y$は$x$に反比例し、$x=-4$のとき$y=2$である。
$x$と$y$の関係を式に表しなさい。
⑤図1のような平行四辺形$ABCD$において、
辺$BC$に点$E$、辺$AD$上に点$F$を、$AE=EF$、$\angle AEF=30°$となるようにとる。
$\angle x$の大きさを求めなさい。
⑥次のア~ウの四角形$ABCD$のうち、点$A,B,C,D$が1つの円周上にあるものを1つ選び、記号で答えなさい。
この動画を見る
高校受験対策・死守88
①方程式$x^2+8x+12=0$を解きなさい。
②次のア~エの数の中で絶対値が最も大きいものを1つ選び、記号で答えなさい。
ア $2$
イ $\sqrt{3}$
ウ $-\frac{7}{3}$
エ $0$
③100gあたり$a$円の牛肉を300gと、100gあたり$b$円の豚肉を500g買ったときの代金の合計が1685円だった。
この数量の関係を等式で表しなさい。
ただし、すべての金額は消費税を含んでいるものとする。
④$y$は$x$に反比例し、$x=-4$のとき$y=2$である。
$x$と$y$の関係を式に表しなさい。
⑤図1のような平行四辺形$ABCD$において、
辺$BC$に点$E$、辺$AD$上に点$F$を、$AE=EF$、$\angle AEF=30°$となるようにとる。
$\angle x$の大きさを求めなさい。
⑥次のア~ウの四角形$ABCD$のうち、点$A,B,C,D$が1つの円周上にあるものを1つ選び、記号で答えなさい。
【数学】平方根:因数分解できそうなのに・・・!
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x+y=\sqrt5+1,xy=\sqrt5-1$の時の$x^2+xy+y^2$の値を求めよ【完成ノート】【因数分解】
この動画を見る
$x+y=\sqrt5+1,xy=\sqrt5-1$の時の$x^2+xy+y^2$の値を求めよ【完成ノート】【因数分解】
【数学】平方根:暗算で根号の中身を変形できない生徒がまずするべき考え方
【高校受験対策/数学】死守-87
単元:
#数学(中学生)#中1数学#正の数・負の数#方程式#式の計算(展開、因数分解)#平方根#2次関数#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
【高校受験対策/数学】死守-87
①$3+(-5)$を計算しなさい。
➁$5\sqrt{6}-\sqrt{24}+\frac{18}{\sqrt{6}}$を計算しなさい。
③$3(x+y)-2(-x+2y)$を計算しなさい。
④$-4ab^2÷(-8a^2b)×3a^2$を計算しなさい。
⑤$(3x-y)^2$を展開しなさい。
⑥$a=3$のとき、$a^2+4a$の値を求めなさい。
⑦一次方程式$\frac{5-3x}{2}-\frac{x-1}{6}=1$を解きなさい。
⑧関数$y=ax^2$のグラフが点$(6,12)$を通っている。
この関数について$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めなさい。
⑨右の図の円$O$で、点$A$が接点と なるように円$O$の接線を作図しなさい。
ただし作図に用いた線は消さずに残しておくこと。
この動画を見る
【高校受験対策/数学】死守-87
①$3+(-5)$を計算しなさい。
➁$5\sqrt{6}-\sqrt{24}+\frac{18}{\sqrt{6}}$を計算しなさい。
③$3(x+y)-2(-x+2y)$を計算しなさい。
④$-4ab^2÷(-8a^2b)×3a^2$を計算しなさい。
⑤$(3x-y)^2$を展開しなさい。
⑥$a=3$のとき、$a^2+4a$の値を求めなさい。
⑦一次方程式$\frac{5-3x}{2}-\frac{x-1}{6}=1$を解きなさい。
⑧関数$y=ax^2$のグラフが点$(6,12)$を通っている。
この関数について$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めなさい。
⑨右の図の円$O$で、点$A$が接点と なるように円$O$の接線を作図しなさい。
ただし作図に用いた線は消さずに残しておくこと。
ルートがらみの連立方程式。明大明治
単元:
#数学(中学生)#中2数学#中3数学#連立方程式#平方根#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{2021}x + \sqrt{2019}y = 2$
$\sqrt{2019}x + \sqrt{2021}y = 1$
$x^2 - y^2 =?$
明治大学付属明治高等学校
この動画を見る
$\sqrt{2021}x + \sqrt{2019}y = 2$
$\sqrt{2019}x + \sqrt{2021}y = 1$
$x^2 - y^2 =?$
明治大学付属明治高等学校
【高校受験対策/数学】死守-86
単元:
#数学(中学生)#中1数学#正の数・負の数#方程式#平方根#比例・反比例#空間図形#2次関数#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守86 @1:57
①$3×(-8)$を計算しなさい。
➁$\frac{1}{2}-\frac{5}{6}$を計算しなさい。
③$-8x^3÷4x^2×(-x)$を計算しなさい。
④$\sqrt{50}+\sqrt{2}$を計算しなさい。
⑤六角形の内角の和を求めなさい。
⑥関数$y=ax^2$について、$x$の値が$2$から$6$まで増加するときの変化の割合が$-4$である。
このとき$a$の値を求めなさい。
⑦右の図は立方体の展開図である。
この立方体において、面$A$と平行になる面を、ア~オの中から1つ選び記号で答えなさい。
⑧$-3$と$-2\sqrt{2}$の大小を、不等号を使って表しなさい。
⑨ある中学校の生徒の人数は126人で、126人全員が徒歩通学か自転車通学のいずれか一方で通学しており、
徒歩通学をしている生徒と自転車通学をしている生徒の人数の比は$5:2$である。
このとき、自転車通学をしている生徒の人数を求めなさい。
この動画を見る
高校受験対策・死守86 @1:57
①$3×(-8)$を計算しなさい。
➁$\frac{1}{2}-\frac{5}{6}$を計算しなさい。
③$-8x^3÷4x^2×(-x)$を計算しなさい。
④$\sqrt{50}+\sqrt{2}$を計算しなさい。
⑤六角形の内角の和を求めなさい。
⑥関数$y=ax^2$について、$x$の値が$2$から$6$まで増加するときの変化の割合が$-4$である。
このとき$a$の値を求めなさい。
⑦右の図は立方体の展開図である。
この立方体において、面$A$と平行になる面を、ア~オの中から1つ選び記号で答えなさい。
⑧$-3$と$-2\sqrt{2}$の大小を、不等号を使って表しなさい。
⑨ある中学校の生徒の人数は126人で、126人全員が徒歩通学か自転車通学のいずれか一方で通学しており、
徒歩通学をしている生徒と自転車通学をしている生徒の人数の比は$5:2$である。
このとき、自転車通学をしている生徒の人数を求めなさい。
【高校受験対策/数学】死守-85
単元:
#数学(中学生)#中1数学#中3数学#正の数・負の数#方程式#平方根#2次方程式#空間図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守85 @4:15
①$2-(3-8)$を計算しなさい。
②$(\frac{1}{3}-\frac{3}{4})÷\frac{5}{6}$を計算しなさい。
③$(-4x)^2÷12xy×9xy^2$を計算しなさい。
④$\sqrt{18}-\frac{10}{\sqrt{ 2 }}$を計算しなさい。
⑤2次方程式$(x-4)(3x+2)=8x-5$を解きなさい。
⑥右の図のように、底面が直角三角形で、側面がすべて長方形の三角柱があり、$AB=6cm$、$BE=4cm$、$\angle ABC=30°$、$\angle ACB=90°$である。
この三角柱の体積を求めなさい。
⑦空間内にある平面$P$と、異なる2直線$l,m$の位置関係について、
つねに正しいものを、次のア~エから1つ選び記号で答えなさい。
ア 直線$l$と直線$m$が、それぞれ平面$P$と交わるならば、直線$l$と直線$m$は交わる。
イ 直線$l$と直線$m$が、それぞれ平面$P$と平行ならば、直線$l$と直線$m$は平行である。
ウ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と垂直であるならば、平面$P$と直線$l$は垂直である。
エ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と交わらないならば、直線$l$と直線$m$はねじれの位置にある。
この動画を見る
高校受験対策・死守85 @4:15
①$2-(3-8)$を計算しなさい。
②$(\frac{1}{3}-\frac{3}{4})÷\frac{5}{6}$を計算しなさい。
③$(-4x)^2÷12xy×9xy^2$を計算しなさい。
④$\sqrt{18}-\frac{10}{\sqrt{ 2 }}$を計算しなさい。
⑤2次方程式$(x-4)(3x+2)=8x-5$を解きなさい。
⑥右の図のように、底面が直角三角形で、側面がすべて長方形の三角柱があり、$AB=6cm$、$BE=4cm$、$\angle ABC=30°$、$\angle ACB=90°$である。
この三角柱の体積を求めなさい。
⑦空間内にある平面$P$と、異なる2直線$l,m$の位置関係について、
つねに正しいものを、次のア~エから1つ選び記号で答えなさい。
ア 直線$l$と直線$m$が、それぞれ平面$P$と交わるならば、直線$l$と直線$m$は交わる。
イ 直線$l$と直線$m$が、それぞれ平面$P$と平行ならば、直線$l$と直線$m$は平行である。
ウ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と垂直であるならば、平面$P$と直線$l$は垂直である。
エ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と交わらないならば、直線$l$と直線$m$はねじれの位置にある。