数学(中学生)
【中学数学】高校入試:2022年度神奈川県立高校入試数学大問2
単元:
#数学(中学生)#高校入試過去問(数学)#神奈川県公立高校入試
指導講師:
理数個別チャンネル
問題文全文(内容文):
(ア)0.2x+0.8y=1 , (1/2)x+(7/8)y=-2
(イ)4x²-x-2=0
(ウ)y=(-1/4)x² , xの変域が-2≦x≦4のとき,yの変域は?
(エ)A班の生徒と,A班よりも5人少ないB班の生徒で,体育館にイスを並べた。A班の生徒はそれぞれ3脚ずつ並べ、B班の生徒はそれぞれ4脚ずつ並べたところ,A班の生徒が並べたイスの総数はB班の生徒が並べたイスの総数より3脚多かった。A班の生徒の人数を求めなさい。
(オ)x=√6+√3,y=√6-√3 のとき、x²y+xy²の値は?
この動画を見る
(ア)0.2x+0.8y=1 , (1/2)x+(7/8)y=-2
(イ)4x²-x-2=0
(ウ)y=(-1/4)x² , xの変域が-2≦x≦4のとき,yの変域は?
(エ)A班の生徒と,A班よりも5人少ないB班の生徒で,体育館にイスを並べた。A班の生徒はそれぞれ3脚ずつ並べ、B班の生徒はそれぞれ4脚ずつ並べたところ,A班の生徒が並べたイスの総数はB班の生徒が並べたイスの総数より3脚多かった。A班の生徒の人数を求めなさい。
(オ)x=√6+√3,y=√6-√3 のとき、x²y+xy²の値は?
2023高校入試解説25問目 整数問題 立教新座(改)
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{24}{a^2+4a+3}$が自然数となるような整数aは何個?
2023立教新座高等学校
この動画を見る
$\frac{24}{a^2+4a+3}$が自然数となるような整数aは何個?
2023立教新座高等学校
佐賀県立高校入試2022年④関数(1)~(4)
単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2022年④関数(1)~(4)
-----------------
関数$y=ax^2$・・・①のグラフ上に2点A、Bがある。
点Aの座標は(-4.-8)であり、点Bの$x$座標は2である。
また、2点A、Bを通る直線を$l$とし、直線$l$と$y$軸との交点をCとする。
(1)aの値を求めなさい。
(2)関数①のグラフを動画内のア~エの中から1つ選び、記号を書きなさい。
(3) 点Bの$y$座標を求めなさい。
(4) 点Cの座標を求めなさい。
この動画を見る
佐賀県立高校入試2022年④関数(1)~(4)
-----------------
関数$y=ax^2$・・・①のグラフ上に2点A、Bがある。
点Aの座標は(-4.-8)であり、点Bの$x$座標は2である。
また、2点A、Bを通る直線を$l$とし、直線$l$と$y$軸との交点をCとする。
(1)aの値を求めなさい。
(2)関数①のグラフを動画内のア~エの中から1つ選び、記号を書きなさい。
(3) 点Bの$y$座標を求めなさい。
(4) 点Cの座標を求めなさい。
【中学数学】三平方の定理の基礎~使い方~【中3数学】
【中学数学】図形を折る問題角度と辺を求めよ~長野県2022年度公立高校入試~【高校受験】
単元:
#数学(中学生)#高校入試過去問(数学)#長野県公立高校入試
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
長野県2022年度公立高校入試
三角形を折り曲げたときの∠EDGと辺GIを求めよ
図は動画内参照
この動画を見る
長野県2022年度公立高校入試
三角形を折り曲げたときの∠EDGと辺GIを求めよ
図は動画内参照
佐賀県立高校入試3⃣公約数
単元:
#数学(中学生)#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試3⃣公約数
-----------------
(ア)
【会話】の中の① にあてはまる数を書きなさい。
(イ)
次のページの文の②にあてはまる語句を、あとの㋐~㋓の中から1つ選び、記号を書きなさい。
-----------------
15は、30と75の②であるから、1辺が15cmより大きい正方形のタイルだけを使って、縦の長さが30cm、横の長さが75cmの長方形の壁にタイルをすき間なく貼ることはできない。
-----------------
㋐最小公倍数
㋑自然数
㋒最大公約数
㋓素数
(ウ)
縦の長さ319g、横の長さが377cmの長方形の壁に、同じ大きさの正方形のタイルを、最も少ない枚数ですき間なく貼りたい。
このとき、使用するタイルの1辺の長さを求めなさい。
この動画を見る
佐賀県立高校入試3⃣公約数
-----------------
(ア)
【会話】の中の① にあてはまる数を書きなさい。
(イ)
次のページの文の②にあてはまる語句を、あとの㋐~㋓の中から1つ選び、記号を書きなさい。
-----------------
15は、30と75の②であるから、1辺が15cmより大きい正方形のタイルだけを使って、縦の長さが30cm、横の長さが75cmの長方形の壁にタイルをすき間なく貼ることはできない。
-----------------
㋐最小公倍数
㋑自然数
㋒最大公約数
㋓素数
(ウ)
縦の長さ319g、横の長さが377cmの長方形の壁に、同じ大きさの正方形のタイルを、最も少ない枚数ですき間なく貼りたい。
このとき、使用するタイルの1辺の長さを求めなさい。
2023灘中最初の一問
単元:
#算数(中学受験)#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#過去問解説(学校別)
指導講師:
数学を数楽に
問題文全文(内容文):
$2023 \times (\frac{1}{14} - \frac{1}{15}) \times \frac{1}{17} \times \frac{1}{17}
= 1 \div (81 -?)$
2023灘中学校
この動画を見る
$2023 \times (\frac{1}{14} - \frac{1}{15}) \times \frac{1}{17} \times \frac{1}{17}
= 1 \div (81 -?)$
2023灘中学校
佐賀県立高校入試2022年数学2⃣連立方程式
単元:
#数学(中学生)#中2数学#連立方程式#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2022年数学2⃣連立方程式
-----------------
(ア)
DVDを借りる枚数について、①にあてはまる式を$x$、$y$を用いて表しなさい。
①=20
(イ)
料金の合計について、②にあてはまる式を$x$、$y$を用いて表しなさい。
準新作のDVDを借りる枚数が4枚以下のとき、②=2200
(ウ)
料金の合計について、③にあてはまる式を$x$、$y$を用いて表しなさい。
準新作のDVDを借りる枚数が5枚以上のとき。③=2200
(エ)
準新作のDVDを借りる枚数を求めなさい。
この動画を見る
佐賀県立高校入試2022年数学2⃣連立方程式
-----------------
(ア)
DVDを借りる枚数について、①にあてはまる式を$x$、$y$を用いて表しなさい。
①=20
(イ)
料金の合計について、②にあてはまる式を$x$、$y$を用いて表しなさい。
準新作のDVDを借りる枚数が4枚以下のとき、②=2200
(ウ)
料金の合計について、③にあてはまる式を$x$、$y$を用いて表しなさい。
準新作のDVDを借りる枚数が5枚以上のとき。③=2200
(エ)
準新作のDVDを借りる枚数を求めなさい。
佐賀県立高校入試2022年数学2⃣二次方程式
単元:
#数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2022年数学2⃣二次方程式
-----------------
(ア)
動き始めてから1秒後について、△ABCと正方形DEFGが重なってできる部分の面積を求めなさい。
(イ)
動き始めてから3秒後について、△ABCと正方形DEFGが重なってできる部分の面積を求めなさい。
(ウ)
動き始めて2秒後から4秒後までについて考える。
このとき、△ABCと正方形DEFGが重なってできる部分の面積が1cm²となるのは、動き始めてから何秒後か求めなさい。
ただし、動き始めてからの時間を$x$秒として$x$についての方程式をつくり、答えを求めるまでの過程も書きなさい。
この動画を見る
佐賀県立高校入試2022年数学2⃣二次方程式
-----------------
(ア)
動き始めてから1秒後について、△ABCと正方形DEFGが重なってできる部分の面積を求めなさい。
(イ)
動き始めてから3秒後について、△ABCと正方形DEFGが重なってできる部分の面積を求めなさい。
(ウ)
動き始めて2秒後から4秒後までについて考える。
このとき、△ABCと正方形DEFGが重なってできる部分の面積が1cm²となるのは、動き始めてから何秒後か求めなさい。
ただし、動き始めてからの時間を$x$秒として$x$についての方程式をつくり、答えを求めるまでの過程も書きなさい。
佐賀県立高校入試2022年数学3⃣確率
単元:
#数学(中学生)#中2数学#確率#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2022年数学3⃣確率
-----------------
(ア)
この箱から1本のくじをひくとき、2等のあたりくじである確率を求めなさい。
(イ)
この箱から同時に2本のくじをひくとき、2本とも2等のあたりくじである確率を求めなさい。
(ウ)
この箱から同時に2本のくじをひくとき、1本はあたりくじで、もう1本ははずれくじである確率を求めなさい。
(エ)
この箱から同時に2本のくじをひくとき、少なくとも1本はあたりくじである確率を求めなさい。
この動画を見る
佐賀県立高校入試2022年数学3⃣確率
-----------------
(ア)
この箱から1本のくじをひくとき、2等のあたりくじである確率を求めなさい。
(イ)
この箱から同時に2本のくじをひくとき、2本とも2等のあたりくじである確率を求めなさい。
(ウ)
この箱から同時に2本のくじをひくとき、1本はあたりくじで、もう1本ははずれくじである確率を求めなさい。
(エ)
この箱から同時に2本のくじをひくとき、少なくとも1本はあたりくじである確率を求めなさい。
式の値 広島大附属
単元:
#数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a^2 - b^2 + (a - b) = 0$
$a+b =?$
ただし$a \neq b$
広島大学附属高等学校
この動画を見る
$a^2 - b^2 + (a - b) = 0$
$a+b =?$
ただし$a \neq b$
広島大学附属高等学校
【中学数学】図形を折る証明の問題~長野県2022年度公立高校入試~【高校受験】
単元:
#数学(中学生)#高校入試過去問(数学)#長野県公立高校入試
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
令和4年度2022年度の長野県の公立高校入試大問4の(2)です。
この動画を見る
令和4年度2022年度の長野県の公立高校入試大問4の(2)です。
2023高校入試解説24問目 二乗の和で表せ③ 昭和学院秀英(改)
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
7225は4つの自然数で2乗の和で表せる。
例を1つあげよ。
2023昭和学院秀英高等学校
この動画を見る
7225は4つの自然数で2乗の和で表せる。
例を1つあげよ。
2023昭和学院秀英高等学校
これ知ってる?三平方の定理の裏技
2023高校入試解説23問目 二乗の和で表せ②昭和学院秀英(改)
単元:
#数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$13^2 + x^2 = y^2$となる自然数(x,y)を全て求めよ
2023昭和学院秀英高等学校
この動画を見る
$13^2 + x^2 = y^2$となる自然数(x,y)を全て求めよ
2023昭和学院秀英高等学校
2023高校入試解説22問目 二乗の和で表せ①昭和学院秀英(改)
単元:
#数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$13^2 = 5^2 +12^2$のように$13^2$は2つの自然数の2乗の和で表せる。これを利用して$13^2$を3つの自然数の2乗の和で表せ。
2023昭和学院秀英高等学校
この動画を見る
$13^2 = 5^2 +12^2$のように$13^2$は2つの自然数の2乗の和で表せる。これを利用して$13^2$を3つの自然数の2乗の和で表せ。
2023昭和学院秀英高等学校
2023高校入試解説20問目 比例と反比例と四角形 別解はコメント欄に。城北埼玉
単元:
#数学(中学生)#中1数学#中2数学#比例・反比例#三角形と四角形#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
四角形ACBD=100
a=?
*図は動画内参照
2023城北埼玉高等学校
この動画を見る
四角形ACBD=100
a=?
*図は動画内参照
2023城北埼玉高等学校
2023高校入試解説21問目 2通りで解説!!座標平面上の円 久留米大附設
単元:
#数学(中学生)#中3数学#円#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
円とy軸との交点のy座標を全て求めよ
*図は動画内参照
2023久留米大学附設高等学校(改)
この動画を見る
円とy軸との交点のy座標を全て求めよ
*図は動画内参照
2023久留米大学附設高等学校(改)
【中学数学】高校入試:2022年度神奈川県立高校入試数学大問5イ別解
単元:
#数学(中学生)#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#高校入試過去問(数学)#神奈川県公立高校入試#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
大,小2つのさいころを同時に1回投げ,大きいさいころの出た目の数をa,小さいさいころの出た目の数をbとする。出た目の数によって,線分PQ上に点Rを,PR:RQ=a:bとなるようにとり,線分PRを1辺とする正方形をX,線分RQを1辺とする正方形をYとし,この2つの正方形の面積を比較する。
(イ) Xの面積がYの面積より25cm²以上大きくなる確率は□である。
この動画を見る
大,小2つのさいころを同時に1回投げ,大きいさいころの出た目の数をa,小さいさいころの出た目の数をbとする。出た目の数によって,線分PQ上に点Rを,PR:RQ=a:bとなるようにとり,線分PRを1辺とする正方形をX,線分RQを1辺とする正方形をYとし,この2つの正方形の面積を比較する。
(イ) Xの面積がYの面積より25cm²以上大きくなる確率は□である。
2023高校入試解説19問目 式の値 久留米大附設
単元:
#数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y = 7 \\
x^2 + y^2 = 169
\end{array}
\right.
\end{eqnarray}
$(x-y)(x^2 -y^2) = ?$
2023久留米大学附設高等学校
この動画を見る
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y = 7 \\
x^2 + y^2 = 169
\end{array}
\right.
\end{eqnarray}
$(x-y)(x^2 -y^2) = ?$
2023久留米大学附設高等学校
三平方の定理の裏技教えてみた
99%が間違えた難問
2023高校入試解説18問目 約数の個数が3個 西武文理
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
自然数nの約数は3個その和は57
n=?
2023西部学園文理高等学校
この動画を見る
自然数nの約数は3個その和は57
n=?
2023西部学園文理高等学校
【中学数学】図形を折る問題の基礎~長野県2022年度公立高校入試~【高校受験】
2023高校入試解説17問目 3つの内接円 渋谷教育学園幕張
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
青○:半径3
緑○:半径4
赤○:半径=?
*図は動画内参照
2023渋谷教育学園幕張高等学校(改)
この動画を見る
青○:半径3
緑○:半径4
赤○:半径=?
*図は動画内参照
2023渋谷教育学園幕張高等学校(改)
【中学数学】意外と差が付く角度の問題~2022年度高知県公立高校入試~【高校受験】
2023高校入試解説15問目 3種類の4ケタの数 渋谷教育学園幕張 コメントに別解多数あり!!
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
1000~9999の4ケタの整数について2023のようにちょうど3種類の数字が用いられている整数は何個?
2023渋谷教育学園幕張高等学校
この動画を見る
1000~9999の4ケタの整数について2023のようにちょうど3種類の数字が用いられている整数は何個?
2023渋谷教育学園幕張高等学校
2023高校入試解説16問目 3つの内接円 渋谷教育学園幕張
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle QPR=?$
*図は動画内参照
2023渋谷教育学園幕張高等学校
この動画を見る
$\angle QPR=?$
*図は動画内参照
2023渋谷教育学園幕張高等学校
2023高校入試解説14問目 2次方程式 渋谷教育学園幕張
単元:
#数学(中学生)#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$(x+\sqrt 3 +\sqrt 5)^2 - 3 \sqrt 5(x-2 \sqrt 5 + \sqrt 3 ) -35 = 0$
2023渋谷教育学園幕張高等学校
この動画を見る
方程式を解け
$(x+\sqrt 3 +\sqrt 5)^2 - 3 \sqrt 5(x-2 \sqrt 5 + \sqrt 3 ) -35 = 0$
2023渋谷教育学園幕張高等学校