数学検定準1級

数検準1級2次過去問(7番 微分積分)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#面積・体積・長さ・速度#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
7⃣ $y=(1+logx)logx$
とx軸で囲まれた図形の面積を求めよ。
この動画を見る
7⃣ $y=(1+logx)logx$
とx軸で囲まれた図形の面積を求めよ。
練習問題3(数検準1級,教員採用試験 対数と相加相乗平均)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#その他#数学検定#数学検定準1級#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\sqrt x+ \sqrt y = 20$
$log_{10}x+log_{10}y$の最大値を求めよ。
この動画を見る
$\sqrt x+ \sqrt y = 20$
$log_{10}x+log_{10}y$の最大値を求めよ。
数検準1級2次過去問(1番 指数対数の不等式)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#対数関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
1⃣
$2^xlog_2x+2^{x+2}-4log_2x-16 < 0$
をみたすxの値の範囲を求めよ。
この動画を見る
1⃣
$2^xlog_2x+2^{x+2}-4log_2x-16 < 0$
をみたすxの値の範囲を求めよ。
数検準1級1次過去問(7番 極限値)

単元:
#数学検定・数学甲子園・数学オリンピック等#関数と極限#関数の極限#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
7⃣$\displaystyle \lim_{ n \to \infty } n \{ log(n+3) - logn \}$
$\displaystyle \lim_{ n \to \infty } (1+\frac{1}{n})^n = \displaystyle \lim_{ n \to 0 } (1+n)^{\frac{1}{n}}=e$
この動画を見る
7⃣$\displaystyle \lim_{ n \to \infty } n \{ log(n+3) - logn \}$
$\displaystyle \lim_{ n \to \infty } (1+\frac{1}{n})^n = \displaystyle \lim_{ n \to 0 } (1+n)^{\frac{1}{n}}=e$
数検準1級1次過去問(5番 積分)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
5⃣
(1)$\int x(x^2+4)^{\frac{1}{3}} dx$
(2)$\int_2^{2\sqrt{15}} x(x^2+4)^{\frac{1}{3}} dx$
この動画を見る
5⃣
(1)$\int x(x^2+4)^{\frac{1}{3}} dx$
(2)$\int_2^{2\sqrt{15}} x(x^2+4)^{\frac{1}{3}} dx$
数検準1級1次過去問(4番 複素数)

単元:
#数学検定・数学甲子園・数学オリンピック等#複素数平面#複素数平面#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
4⃣
$α=-2+2i$ , $β=3+3\sqrt{3}i$
(1)$|\frac{α}{β}|$を求めよ。
(2)$\frac{α}{β}$の偏角θを求めよ。
この動画を見る
4⃣
$α=-2+2i$ , $β=3+3\sqrt{3}i$
(1)$|\frac{α}{β}|$を求めよ。
(2)$\frac{α}{β}$の偏角θを求めよ。
数検準1級1次過去問(3番 ベクトル)

単元:
#数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#平面上のベクトルと内積#数学検定#数学検定準1級#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
3⃣
$|\vec{ a }|=\sqrt{10}$ , $|\vec{ b }|=\sqrt{5}$ , $\vec{ a }・\vec{ b } = -\sqrt{2}$
$ \vec{ a }⊥(\vec{ a }+t\vec{ b })$
のとき$|\vec{ a }+t\vec{ b }|$を求めよ。
この動画を見る
3⃣
$|\vec{ a }|=\sqrt{10}$ , $|\vec{ b }|=\sqrt{5}$ , $\vec{ a }・\vec{ b } = -\sqrt{2}$
$ \vec{ a }⊥(\vec{ a }+t\vec{ b })$
のとき$|\vec{ a }+t\vec{ b }|$を求めよ。
数検準1級1次過去問(2番 解と係数の関係)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
2⃣$x^3-7x^2-4x+1=0$
の3つの解をα、β、γとする。
$α^2+β^2+γ^2$の値を求めよ。
解と係数の関係
$ax^3+bx^2+cx+d=0$
$α+β+γ=- \frac{b}{a}$
$αβ+βγ+γα=\frac{c}{a}$
$αβγ=- \frac{d}{a}$
この動画を見る
2⃣$x^3-7x^2-4x+1=0$
の3つの解をα、β、γとする。
$α^2+β^2+γ^2$の値を求めよ。
解と係数の関係
$ax^3+bx^2+cx+d=0$
$α+β+γ=- \frac{b}{a}$
$αβ+βγ+γα=\frac{c}{a}$
$αβγ=- \frac{d}{a}$
数検準1級1次過去問(1番 相加平均・相乗平均)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#恒等式・等式・不等式の証明#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
1⃣ a≠0
$\frac{2a^4-4a^2+8}{a^2}$の最小値を求めよ
この動画を見る
1⃣ a≠0
$\frac{2a^4-4a^2+8}{a^2}$の最小値を求めよ
数検準1級1次過去問(6番 楕円)

単元:
#数学検定・数学甲子園・数学オリンピック等#平面上の曲線#2次曲線#数学検定#数学検定準1級#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
6⃣
楕円$x^2-4x+2y^2+12y+14=0$
の焦点の座標を求めよ。
この動画を見る
6⃣
楕円$x^2-4x+2y^2+12y+14=0$
の焦点の座標を求めよ。
練習問題1(数検準1級、教員採用試験 数列の極限)

単元:
#数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#その他#数学検定#数学検定準1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$a_2=a_1=1$
$a_{n+2}=a_{n+1}+a_n$
$\displaystyle \lim_{ n \to \infty } \frac{loga_n}{n}$を求めよ。
この動画を見る
$a_2=a_1=1$
$a_{n+2}=a_{n+1}+a_n$
$\displaystyle \lim_{ n \to \infty } \frac{loga_n}{n}$を求めよ。
練習問題1(数検準1級、教員採用試験 レベル)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#その他#数学検定#数学検定準1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
(1)$\int \frac{x}{cos^2x} dx$
(2)$\int \frac{x}{sin^2x} dx$
この動画を見る
(1)$\int \frac{x}{cos^2x} dx$
(2)$\int \frac{x}{sin^2x} dx$
20年5月数検準1級1次試験(楕円)

単元:
#数学検定・数学甲子園・数学オリンピック等#平面上の曲線#2次曲線#数学検定#数学検定準1級#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
6⃣
2点A(0,-3)、B(0,1)から距離の和が6である楕円の方程式を求めよ
この動画を見る
6⃣
2点A(0,-3)、B(0,1)から距離の和が6である楕円の方程式を求めよ
20年5月数検準1級1次試験(楕円)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#円と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
2点$A(0,-3),B(0,1)$から距離の和が6である楕円の方程式を求めよ.
20年5月数検準1級1次試験(楕円)過去問
この動画を見る
$\boxed{6}$
2点$A(0,-3),B(0,1)$から距離の和が6である楕円の方程式を求めよ.
20年5月数検準1級1次試験(楕円)過去問
20年5月数検準1級1次試験(極限)

単元:
#数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
7⃣$\displaystyle \lim_{ n \to \infty } (\sqrt{4n^2+7n} - 2\sqrt{n^2+2n})$
この動画を見る
7⃣$\displaystyle \lim_{ n \to \infty } (\sqrt{4n^2+7n} - 2\sqrt{n^2+2n})$
20年5月数検準1級1次試験(極限)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{7}$
$\displaystyle \lim_{n\to\infty}(\sqrt{4n^2+7n}-2\sqrt{n^2+2n})$
これを解け.
20年5月数検準1級1次試験(極限)過去問
この動画を見る
$\boxed{7}$
$\displaystyle \lim_{n\to\infty}(\sqrt{4n^2+7n}-2\sqrt{n^2+2n})$
これを解け.
20年5月数検準1級1次試験(極限)過去問
20年5月数学検定準1級1次試験(複素数)

単元:
#数学検定・数学甲子園・数学オリンピック等#複素数平面#複素数平面#数学検定#数学検定準1級#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
4⃣
$α=(-1+i)(i-\sqrt 3 i)$
(1)|α|を求めよ
(2)arg αを求めよ $0 \leqq arg α < 2\pi$
この動画を見る
4⃣
$α=(-1+i)(i-\sqrt 3 i)$
(1)|α|を求めよ
(2)arg αを求めよ $0 \leqq arg α < 2\pi$
20年5月数学検定準1級1次試験(複素数)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{4}$
$\alpha=(-1+i)(1-\sqrt3 i)$
(1)$\vert \alpha \vert $を求めよ.
(2)$arg \alpha$を求めよ.
$0\leqq arg \alpha \lt 2\pi$
20年5月数学検定準1級1次試験(複素数)過去問
この動画を見る
$\boxed{4}$
$\alpha=(-1+i)(1-\sqrt3 i)$
(1)$\vert \alpha \vert $を求めよ.
(2)$arg \alpha$を求めよ.
$0\leqq arg \alpha \lt 2\pi$
20年5月数学検定準1級1次試験(複素数)過去問
20年5月数学検定準1級1次試験(円の方程式)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
2⃣円$C_1$の中心は(-6,2)で直線$l:3x-4y+1=0$に接する。
このとき円$C_1$がx軸から切り取る線分の長さl'を求めよ。
この動画を見る
2⃣円$C_1$の中心は(-6,2)で直線$l:3x-4y+1=0$に接する。
このとき円$C_1$がx軸から切り取る線分の長さl'を求めよ。
20年5月数学検定準1級1次試験(円の方程式)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#円と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{2}$
円$C_1$の中心は$(-6,2)$で直線$\ell:3x-4y+1=0$に接する.
このとき円$C_1$が$x$軸から切り取る線分の長さ$\ell^1$を求めよ.
20年5月数学検定準1級1次試験(円の方程式)過去問
この動画を見る
$\boxed{2}$
円$C_1$の中心は$(-6,2)$で直線$\ell:3x-4y+1=0$に接する.
このとき円$C_1$が$x$軸から切り取る線分の長さ$\ell^1$を求めよ.
20年5月数学検定準1級1次試験(円の方程式)過去問
20年5月数学検定準1級1次試験(積分)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{5}$
(1)$\displaystyle \int_{}^{}\dfrac{dx}{\sin 2x}$
(2)$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\dfrac{dx}{\sin 2x}$
20年5月数学検定準1級1次試験(積分)過去問
この動画を見る
$\boxed{5}$
(1)$\displaystyle \int_{}^{}\dfrac{dx}{\sin 2x}$
(2)$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\dfrac{dx}{\sin 2x}$
20年5月数学検定準1級1次試験(積分)過去問
20年5月数学検定準1級1次試験(積分)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
5⃣
(1)$\int \frac{dx}{sin2x}$
(2)$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{dx}{sin2x}$
この動画を見る
5⃣
(1)$\int \frac{dx}{sin2x}$
(2)$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{dx}{sin2x}$
20年5月数学検定準1級1次試験(三角関数)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}$
$0\leqq \theta \lt 2\pi$
$\sqrt2 \cos \theta -\sqrt2 \sin \theta=1$
20年5月数学検定準1級1次試験(三角関数)過去問
この動画を見る
$\boxed{1}$
$0\leqq \theta \lt 2\pi$
$\sqrt2 \cos \theta -\sqrt2 \sin \theta=1$
20年5月数学検定準1級1次試験(三角関数)過去問
20年5月数学検定準1級1次試験(三角関数)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#三角関数とグラフ#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
1⃣ $0 \leqq θ < 2\pi$
$\sqrt 2 cosθ - \sqrt 2 sinθ = 1$
この動画を見る
1⃣ $0 \leqq θ < 2\pi$
$\sqrt 2 cosθ - \sqrt 2 sinθ = 1$
20年5月数学検定準1級1次試験(数列)

単元:
#数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$
$3a_n-2s_n=3^n(s_n=a_1+a_2+・・・+a_n)$
20年5月数学検定準1級1次試験(数列)過去問
この動画を見る
$\boxed{3}$
$3a_n-2s_n=3^n(s_n=a_1+a_2+・・・+a_n)$
20年5月数学検定準1級1次試験(数列)過去問
20年5月数学検定準1級1次試験(数列)

単元:
#数学検定・数学甲子園・数学オリンピック等#数列#漸化式#数学検定#数学検定準1級#数学(高校生)#数B
指導講師:
ますただ
問題文全文(内容文):
3⃣$3a_n-2S_n=3^n$
$(S_n=a_1+a_2+\cdots+a_n)$
この動画を見る
3⃣$3a_n-2S_n=3^n$
$(S_n=a_1+a_2+\cdots+a_n)$
数検準1級 極限値 高校数学

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{x \sin x}{1-\cos 3x}$
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin (2\sin x)}{3x}$
(3)
$\displaystyle \lim_{ x \to 2 }\displaystyle \frac{2-x}{\sqrt{ x+2 }-2}$
出典:数学検定準1級 過去問
この動画を見る
(1)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{x \sin x}{1-\cos 3x}$
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin (2\sin x)}{3x}$
(3)
$\displaystyle \lim_{ x \to 2 }\displaystyle \frac{2-x}{\sqrt{ x+2 }-2}$
出典:数学検定準1級 過去問
数検準1級 三項間漸化式 極限 高校数学

単元:
#数学検定・数学甲子園・数学オリンピック等#数列#漸化式#数学検定#数学検定準1級#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$A \neq 0$ $a_{1}=1, a_{2}=2A$
$a_{n+2}=2Aa_{n+1}-A^2a_{n}$
一般項を求めよ。
(2)
$\displaystyle \lim_{ x \to \infty }x^2(1=\cos^3 \displaystyle \frac{1}{x})$
極限値を求めよ。
出典:数学検定準1級 過去問
この動画を見る
(1)
$A \neq 0$ $a_{1}=1, a_{2}=2A$
$a_{n+2}=2Aa_{n+1}-A^2a_{n}$
一般項を求めよ。
(2)
$\displaystyle \lim_{ x \to \infty }x^2(1=\cos^3 \displaystyle \frac{1}{x})$
極限値を求めよ。
出典:数学検定準1級 過去問