数学検定2級 - 質問解決D.B.(データベース)

数学検定2級

【数検2級】高校数学:数学検定2級2次:問題4

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学検定#数学検定2級#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
AB=5,BC=6,CA=4である△ABCの内接円の中心をIとします。また、直線AIと辺BCの交点をDとします。
このとき、$\overrightarrow{ AB }=\vec{ b }$ ,$\overrightarrow{ AC }=\vec{ c }$として、次の問いに答えなさい。
(1) $\overrightarrow{ AD }$を$\vec{ b }$ ,$\vec{ c }$を用いて表しなさい。
(2) $\overrightarrow{ AI }$を$\vec{ b }$ ,$\vec{ c }$を用いて表しなさい。
この動画を見る 

【数検2級】数学検定2級2次 問題4

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題4.(選択)
AB=5,BC=6,CA=4である△ABCの内接円の中心をIとします。また、直線AIと辺BCの交点をDとします。
このとき、→AB=→b ,→AC=→cとして、次の問いに答えなさい。
(1) →ADを→b,→cを用いて表しなさい。
(2) →AIを→b,→cを用いて表しなさい。
この動画を見る 

【数検2級】数学検定2級2次 問題3

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題3.(選択)
 xy平面上において、点Pが円$x^2+y^2=4$上を動くとき、点A(3,1)と点Pを結ぶ線分APの中点Qの軌跡を求めなさい。
この動画を見る 

【数検2級】高校数学:数学検定2級2次:問題3

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#軌跡と領域#数学検定#数学検定2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題3.(選択)
xy平面上において、点Pが円$x^2+y^2=4$上を動くとき、点A$(3,1)$と点Pを結ぶ線分APの中点Qの軌跡を求めなさい。
この動画を見る 

【数検2級】高校数学:数学検定2級2次:問題2

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#確率#数学検定#数学検定2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題2.(選択)
 nを0以上の整数とします。点P,Qは正四面体ABCDの頂点の上を,次の条件①,②に従って移動するものとします。
 ① 最初,点Pは頂点A,点Qは頂点Bにいる。
 ② 点Pと点Qは独立して1秒ごとに現在位置から他の3つの頂点のいずれかにそれぞれ1/3の確率で移動する。
 移動を始めてからn秒後に点Pと点Qが同じ頂点にいる確率をPnとするとき,P₁,P₂,P₃をそれぞれ求めなさい。
この動画を見る 

【数検2級】数学検定2級2次 問題2

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題2.(選択)
 nを0以上の整数とします。点P,Qは正四面体ABCDの頂点の上を,次の条件①,②に従って移動するものとします。
 ① 最初,点Pは頂点A,点Qは頂点Bにいる。
 ② 点Pと点Qは独立して1秒ごとに現在位置から他の3つの頂点のいずれかにそれぞれ1/3の確率で移動する。
 移動を始めてからn秒後に点Pと点Qが同じ頂点にいる確率をPnとするとき,$P_1,P_2,P_3$をそれぞれ求めなさい。
この動画を見る 

【数検2級】数学検定2級2次:問題1

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#2次関数#2次関数とグラフ#数学検定#数学検定2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1.(選択)
aを定数とします。2次関数$y=2x^3-4ax+1(0\leqq x \leqq 3)$について、次の問いに答えなさい。
(1)$a=2$のとき、yのとり得る値の範囲を求めなさい。
(2)$y$のとり得る値の範囲が$1\leqq y\leqq 25$であるとき、aの値を求めなさい。
この動画を見る 

【数検2級】数学検定2級2次:問題7

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#接線と増減表・最大値・最小値#数学検定#数学検定2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$y=x^3-2x$ で表されるxy平面上の曲線をCとします。このとき、次の問いに答えなさい。
(1) C上の点($t,t^3-2t$)における接線の方程式をtを用いて表しなさい。
(2) 点(0,-2)からCへ引いた接線の方程式を求めなさい。
この動画を見る 

【数検2級】数学検定2級2次:問題6

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学検定#数学検定2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題6.(必須)
△ABCにおいて、$BC=a、CA=b、AB=c$とするとき、次の問いに答えなさい。
(1)$a\cos B+b\cos A-c$ の値を求めなさい。この問題は解法の過程を記述せずに、答えだけを書いてください。
(2) 次の等式が成り立つとき、△ABCはどのような三角形ですか。理由をつけて答えなさい。
  $a^2\sin^2B+b^2\sin^2 A=2ab\cos A\cos B$
この動画を見る 

【数検2級】数学検定2級 問題13~問題15

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題13.2つのベクトルa,bのなす角が60゜で$\vert a\vert=6\vert b\vert=7$のとき、内積a・bを求めなさい。

問題14.第3項が1、第10項が22である等差数列について、次の問いに答えなさい。
   ① 初項を求めなさい。
   ② 公差を求めなさい。

問題15.関数$f(x)=x^3-5x+7$ について、次の問いに答えなさい。
   ① 導関数$f'(x)$を求めなさい。
   ② 微分係数$f'(2)$を求めなさい。
この動画を見る 

【数検2級】数学検定2級 問題9~問題12

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題9.整式$x^4+3x^2+3x-2$を$x^2-2x+2$で割ったときの余りを求めなさい。
問題10.xy平面上の2点A(-2,0),B(4,-3)を結んでできる線分ABを2:1に内分する点Pの座標を求めなさい。
問題11.次の計算をしなさい。
    $\log_{10}\dfrac{1}{36}+2\log_{10}\dfrac{6}{5}-\log_{10}4$
問題12.$0\leqq\theta\leqq 2\pi$のとき、次の方程式を満たす$\theta$の値を求めなさい。
    $-2\sin\theta+1=0$
この動画を見る 

【数検2級】数学検定2級 問題4~問題8

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題4. 2次関数$y=x^2+4x+a$の最小値が1となるように、定数aの値を定めなさい。
問題5. $0°\leqq\theta\leqq 180°$とします。$\tan\theta=\dfrac{1}{2}$のとき、$\cos\theta$の値を求めなさい。
問題6. 3個のさいころを同時に振るとき、3個とも異なる目が出る確率を求めなさい。ただし、さいころの目は1から6まであり、どの目も出る確率は等しいものとします。
問題7. 2進法で表された数$1011010_{(2)}$を10進法で表しなさい。
問題8. 次の計算をしなさい。$\dfrac{x+1}{x+2} -\dfrac{x+2}{x+3}$
この動画を見る 

【数検2級】数学検定2級 問題1~問題3

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1.次の式を展開して計算しなさい。
$(x+1)^2(x-1)^2$
問題2.次の式を因数分解しなさい。
$8a^2+22a+15$
問題3.次の式の分母を有理化しなさい。
$\dfrac{2}{\sqrt7}-1$
この動画を見る 
PAGE TOP