【数Ⅲ】うまく式変形できる?【数学 入試問題】 - 質問解決D.B.(データベース)

【数Ⅲ】うまく式変形できる?【数学 入試問題】

問題文全文(内容文):
$ f(x)=x sin^2x(0≦x≦\pi)$
の最大値を与える$ x$を$a$とするとき、$f(a)$を$a$の分数式で表せ。

横浜市大過去問
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ f(x)=x sin^2x(0≦x≦\pi)$
の最大値を与える$ x$を$a$とするとき、$f(a)$を$a$の分数式で表せ。

横浜市大過去問
投稿日:2022.05.27

<関連動画>

福田の数学〜早稲田大学2022年理工学部第5問〜対数関数の極限と変曲点とグラフの接線

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}\ a \gt 0$を定数とし、
$f(x)=x^a\log x$とする。以下の問いに答えよ。
(1)$\lim_{x \to +0}f(x)$を求めよ。必要ならば$\lim_{s \to \infty}se^{-s}=0$が成り立つことは
証明なしに用いてよい。
(2)曲線$y=f(x)$の変曲点がx軸上に存在するときのaの値を求めよ。
さらにそのとき$y=f(x)$のグラフの概形を描け。
(3)$t \gt 0$に対して、曲線$y=f(x)$上の点(t,f(t))における接線をlとする。
lがy軸の負の部分と交わるための$(a,t)$の条件を求め、その条件の表す領域を
a-t平面上に図示せよ。

2022早稲田大学人間科学部過去問
この動画を見る 

【数学Ⅲ/微分】三角関数の微分①(合成関数の微分)

アイキャッチ画像
単元: #微分法#数Ⅲ
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数を微分せよ。
(1)
$y=\sin x-\tan x$

(2)
$y=\cos(3x+1)$

(3)
$y=\cos x^2$

(4)
$y=\sin^3x$
この動画を見る 

福田の数学〜名古屋大学2023年理系第2問〜回転体の体積と関数の増減と最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#面積、体積#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 0<b<a とする。xy平面において、原点を中心とする半径rの円Cと点(a, 0)を中心とする半径bの円Dが2点で交わっている。
(1)半径rの満たすべき条件を求めよ。
(2)CとDの交点のうちy座標が正のものをPとする。Pのx座標h(r)を求めよ。
(3)点Q(r, 0)と点R(a-b, 0)をとる。Dの内部にあるCの弧PQ、線分QR、および線分RPで囲まれる図形をAとする。xyz空間においてAをx軸の周りに1回転して得られる立体の体積V(r)を求めよ。ただし答えにh(r)を用いてもよい。
(4)(3)の最大値を与えるrを求めよ。また、そのrをr(a)とおいたとき、
$\displaystyle\lim_{a \to \infty}(r(a)-a)$を求めよ。

2023名古屋大学理系過去問
この動画を見る 

【数Ⅲ】【微分とその応用】関数の最大と最小4 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数 $ \displaystyle f(x)= \frac{ax^2+bx+1}{x^2+1}$ が $x=2$で極小値$-1$をとるように、定数$a,b$の値を定めよ。また、$f(x)$の極大値を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系057〜微分(2)逆関数の微分

アイキャッチ画像
単元: #微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(2) 逆関数の微分

$y=\tan x  (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})$
の逆関数の第2次導関数を求めよ。
この動画を見る 
PAGE TOP