福田の一夜漬け数学〜図形と方程式〜円の方程式(11)円群と共通弦、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜円の方程式(11)円群と共通弦、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$x^2+y^2+4x-2y+4=0$ $\cdots$②について、
(1)2つの円は、異なる2点で交わることを示せ。
(2)2つの円の交点を通る直線の方程式を求めよ。
(3)2つの円の交点と原点を通る円の方程式を求めよ。

${\Large\boxed{2}}$ 中心$(a,b),$半径2の円と円$x^2+y^2=9$ $\cdots$①との2つの共有点を通る直線
の方程式が$6x-2y-15=0$となるような点$(a,b)$を求めよ。
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$x^2+y^2+4x-2y+4=0$ $\cdots$②について、
(1)2つの円は、異なる2点で交わることを示せ。
(2)2つの円の交点を通る直線の方程式を求めよ。
(3)2つの円の交点と原点を通る円の方程式を求めよ。

${\Large\boxed{2}}$ 中心$(a,b),$半径2の円と円$x^2+y^2=9$ $\cdots$①との2つの共有点を通る直線
の方程式が$6x-2y-15=0$となるような点$(a,b)$を求めよ。
投稿日:2018.08.08

<関連動画>

福田の数学〜神戸大学2023年文系第3問〜2つの円の位置関係と共通弦

アイキャッチ画像
単元: #大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ aを正の実数とする。2つの円
$C_1$:$x^2$+$y^2$=$a$, $C_2$:$x^2$+$y^2$-$6x$-$4y$+3=0
が異なる2点A, Bで交わっているとする。直線ABが$x$軸および$y$軸と交わる点をそれぞれ($p$, 0), (0, $q$)とするとき、以下の問いに答えよ。
(1)$a$のとりうる値の範囲を求めよ。
(2)$p$, $q$の値を$a$を用いて表せ。
(3)$p$, $q$の値が共に整数となるような$a$の値をすべて求めよ。

2023筑波大学理系過去問
この動画を見る 

福田のわかった数学〜高校2年生026〜円が直線から切り取る弦の長さ

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円が直線から切り取る弦の長さ
円$x^2+y^2=13$ が直線
$kx+2y-4k=0$
から切り取る弦の長さが$2\sqrt5$であるとき、
定数kの値を求めよ。
この動画を見る 

【数Ⅱ】図形と方程式:円と直線! aを実数とする。円x²+y²-4x-8y+15=0と直線y=ax+1が 異なる2点A,Bで交わっている。 (1)aの範囲を求めなさい。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数とする。円$x^2+y^2-4x-8y+15=0$と直線y=ax+1が 異なる2点A,Bで交わっている。 (1)aの範囲を求めなさい。
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第4問PART1〜円に内接する円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#複素数平面#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#微分とその応用#複素数平面#図形への応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面において原点Oを中心とする半径1の円を$C_1$とし、$C_1$の内部にある第1象限の点Pの極座標を(r, θ)とする。さらに点Pを中心とする円$C_2$が$C_1$上の点Qにおいて$C_1$に内接し、x軸上の点Rにおいてx軸に接しているとする。
また、極座標が(1, π)である$C_1$上の点をAとし、直線AQのy切片をtとする。
(1)rをθの式で表すとr=$\boxed{\ \ あ\ \ }$となり、tの式で表すとr=$\boxed{\ \ い\ \ }$となる。
(2)円$C_2$と同じ半径をもち、x軸に関して円$C_2$と対称な位置にある円$C'_2$の中心P'とする。三角形POP'の面積はθ=$\boxed{\ \ う\ \ }$のとき最大値$\boxed{\ \ え\ \ }$をとる。θ=$\boxed{\ \ う\ \ }$は条件t=$\boxed{\ \ お\ \ }$と同値である。
(3)円$C_1$に内接し、円$C_2$と$C'_2$の両方に外接する円のうち大きい方を$C_3$とする。円$C_3$の半径bをtの式で表すとb=$\boxed{\ \ か\ \ }$となる。
(4)3つの円$C_2$, $C'_2$, $C_3$の周の長さの和はθ=$\boxed{\ \ き\ \ }$の最大値$\boxed{\ \ く\ \ }$をとる。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

【数Ⅱ】円の接線【流れを覚えて自分で導出する】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ x^2+y^2=25上の点(3,4)における接線lの方程式を求めよ.$
この動画を見る 
PAGE TOP