京都大 関数 - 質問解決D.B.(データベース)

京都大 関数

問題文全文(内容文):
$a,b$実数
$f(x)=\displaystyle \frac{ax+b}{x^2+x+1}$

すべての実数$x$にたいして不等式

$f(x) \leqq f(x)^3-2f(x)^2+2$が成り立つ$(a,b)$を図示せよ

出典:2014年京都大学 過去問
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$f(x)=\displaystyle \frac{ax+b}{x^2+x+1}$

すべての実数$x$にたいして不等式

$f(x) \leqq f(x)^3-2f(x)^2+2$が成り立つ$(a,b)$を図示せよ

出典:2014年京都大学 過去問
投稿日:2019.07.23

<関連動画>

#17数検1級1次 過去問 微分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#微分法#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$

$0\lt \theta\lt \dfrac{\pi}{2}$,
$x=\sin\theta$
$y=-\log\left(\tan\dfrac{\theta}{2}\right)-\cos\theta$とする.
$\dfrac{d^2y}{dx^2}$を$\theta$で表せ.
この動画を見る 

福田のおもしろ数学395〜2変数関数の最大値

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$x\gt 0,y\gt 0$のとき、

$f(x,y=min \left(x,\dfrac{y}{x^2+y^2}\right)$

の最大値を求めて下さい。

*$min(a,b)$は$a,b$の大きくない方の値を
意味します。
この動画を見る 

福田のわかった数学〜高校3年生理系077〜極値(1)極大値をもつ条件

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極値(1)
$f(x)=\frac{a-\cos x}{a+\sin x}\ が0 \lt x \lt \frac{\pi}{2}$の範囲で
極大値をもつように定数aの値の範囲を定めよ。
この動画を見る 

08愛知県教員採用試験(数学:10番 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{10}$ $$f'(x)-2\ f(x)-2=0$
$f(0)=9$のとき,$f(1)$を求めよ.(解)
この動画を見る 

福田のわかった数学〜高校3年生理系062〜微分(7)多重因子(1)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(7) 多重因子(1)
整式$f(x)$が$(x-\alpha)^3$で割り切れる$\iff f(a)=f'(a)=f''(a)=0$
であることを示せ。
この動画を見る 
PAGE TOP