問題文全文(内容文):
$a,b$は2以上の自然数
(1)
$a^b-1$が素数なら$a=2,b$は素数。示せ
(2)
$a^b+1$が素数なら$b=2^c(c$は自然数$)$示せ
出典:2007年千葉大学 過去問
$a,b$は2以上の自然数
(1)
$a^b-1$が素数なら$a=2,b$は素数。示せ
(2)
$a^b+1$が素数なら$b=2^c(c$は自然数$)$示せ
出典:2007年千葉大学 過去問
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$は2以上の自然数
(1)
$a^b-1$が素数なら$a=2,b$は素数。示せ
(2)
$a^b+1$が素数なら$b=2^c(c$は自然数$)$示せ
出典:2007年千葉大学 過去問
$a,b$は2以上の自然数
(1)
$a^b-1$が素数なら$a=2,b$は素数。示せ
(2)
$a^b+1$が素数なら$b=2^c(c$は自然数$)$示せ
出典:2007年千葉大学 過去問
投稿日:2019.10.22