問題文全文(内容文):
これを解け.
$\dfrac{1}{2!9!}+\dfrac{1}{3!8!}+\dfrac{1}{4!7!}+\dfrac{1}{5!6!}=\dfrac{n}{10!}$
$\displaystyle \sum_{k=1}^{6}\dfrac{1}{k!(13-k)!}=\dfrac{n}{12!}$
これを解け.
$\dfrac{1}{2!9!}+\dfrac{1}{3!8!}+\dfrac{1}{4!7!}+\dfrac{1}{5!6!}=\dfrac{n}{10!}$
$\displaystyle \sum_{k=1}^{6}\dfrac{1}{k!(13-k)!}=\dfrac{n}{12!}$
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\dfrac{1}{2!9!}+\dfrac{1}{3!8!}+\dfrac{1}{4!7!}+\dfrac{1}{5!6!}=\dfrac{n}{10!}$
$\displaystyle \sum_{k=1}^{6}\dfrac{1}{k!(13-k)!}=\dfrac{n}{12!}$
これを解け.
$\dfrac{1}{2!9!}+\dfrac{1}{3!8!}+\dfrac{1}{4!7!}+\dfrac{1}{5!6!}=\dfrac{n}{10!}$
$\displaystyle \sum_{k=1}^{6}\dfrac{1}{k!(13-k)!}=\dfrac{n}{12!}$
投稿日:2021.05.08