順天堂大(医)等比数列の和の収束 - 質問解決D.B.(データベース)

順天堂大(医)等比数列の和の収束

問題文全文(内容文):
{$a_n$}は等比数列
無限級数
$a_2+a_4+a_6+…$は$\displaystyle \frac{12}{5}$に収束
$a_3+a_6+a_9+…$は$\displaystyle \frac{24}{19}$に収束

{$a_n$}の公比、初項、無限階数$a_1+a_2+1_3+…$は[ ]に収束するか求めよ

出典:順天堂大学医学部 過去問
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
{$a_n$}は等比数列
無限級数
$a_2+a_4+a_6+…$は$\displaystyle \frac{12}{5}$に収束
$a_3+a_6+a_9+…$は$\displaystyle \frac{24}{19}$に収束

{$a_n$}の公比、初項、無限階数$a_1+a_2+1_3+…$は[ ]に収束するか求めよ

出典:順天堂大学医学部 過去問
投稿日:2020.02.27

<関連動画>

開成中学 整数 等差数列の和

アイキャッチ画像
単元: #算数(中学受験)#数列#数列とその和(等差・等比・階差・Σ)#過去問解説(学校別)#数学(高校生)#数B#開成中学
指導講師: 鈴木貫太郎
問題文全文(内容文):
平方数を3つ以上の連続数の和で表す
(例)$6^2=1+2+3+…+8=11+12+13$

(1)
$7^2$

(2)
$10^2$

(3)
$30^2$は何通りあるか

出典:2018年開成中学校 過去問
この動画を見る 

13滋賀県教員採用試験(数学:2番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$

$a_1=48$
$a_{n+1}=2a_n+2^{n+3}n-21\ 2^{n+1}$とする.
一般項$a_n$を求めよ.
この動画を見る 

福田の数学〜立教大学2025経済学部第1問(3)〜等差中項と等比中項

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)$x,y,z$は実数であり、$x\lt y$を満たすとする。

$3$つの数$3,x,y$がこの順に等差数列となり、

さらに$4$つの数$4,x,y,z$がこの順に

等差数列となるとき、

$x=\boxed{ウ}、\boxed{エ}、\boxed{オ}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 

Σ

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k^2 = \frac{1}{6}n(n+1)(2n+1)$
この動画を見る 

チャレンジ問題(複雑なパズル)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数列#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\dfrac{1}{1}=?,\ \dfrac{2\cdot 3}{1\cdot 3}=?,\ \dfrac{3\cdot 5\cdot 6}{1\cdot 3\cdot 5}=?$
$\dfrac{4 \cdot 7 \cdot 9 \cdot 10}{1 \cdot 3 \cdot 5 \cdot 7}=?,\ \dfrac{5 \cdot 9 \cdot 12 \cdot 14 \cdot 15}{1 \cdot 3 \cdot 5 \cdot 7 \cdot 4}=?$

(1)各式の右辺を計算せよ.
(2)式の両辺がどのように続くか予想せよ.
(3)(2)の予想を示せ.
この動画を見る 
PAGE TOP