問題文全文(内容文):
$n$:自然数
$a_n=\displaystyle \int_{1}^{\sqrt{ 2 }}x(2-x^2)^ndx$とおく
$\displaystyle \lim_{ n \to \infty }n\ a_n$を求めよ。
出典:2019年東京都市大学 入試問題
$n$:自然数
$a_n=\displaystyle \int_{1}^{\sqrt{ 2 }}x(2-x^2)^ndx$とおく
$\displaystyle \lim_{ n \to \infty }n\ a_n$を求めよ。
出典:2019年東京都市大学 入試問題
単元:
#関数と極限#積分とその応用#数列の極限#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$n$:自然数
$a_n=\displaystyle \int_{1}^{\sqrt{ 2 }}x(2-x^2)^ndx$とおく
$\displaystyle \lim_{ n \to \infty }n\ a_n$を求めよ。
出典:2019年東京都市大学 入試問題
$n$:自然数
$a_n=\displaystyle \int_{1}^{\sqrt{ 2 }}x(2-x^2)^ndx$とおく
$\displaystyle \lim_{ n \to \infty }n\ a_n$を求めよ。
出典:2019年東京都市大学 入試問題
投稿日:2022.06.04