数検準1級2次過去問【2020年12月】2番:数列 - 質問解決D.B.(データベース)

数検準1級2次過去問【2020年12月】2番:数列

問題文全文(内容文):
$\boxed{2}$ $a_1=10,a_{n+1}=\sqrt[5]{a_n}$である.

(1)一般項$a_n$を求めよ.
(2)$P_n=a_1 \times \cdots \times a_n$を求めよ.
単元: #数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$ $a_1=10,a_{n+1}=\sqrt[5]{a_n}$である.

(1)一般項$a_n$を求めよ.
(2)$P_n=a_1 \times \cdots \times a_n$を求めよ.
投稿日:2020.12.15

<関連動画>

慶應義塾大(経済)数列の最大値

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2011慶應義塾大学過去問題
n=1,2,・・・100
$a_n=n3^n$・${}_{100} \mathrm{ C }_n$
$a_n$を最大にするnの値
この動画を見る 

【数B】【数列】数学的帰納法4 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
条件$a_1=3,{a_n}^2=(n+1)a_{n+1}+1$
によって定められる数列$\{a_n\}$がある。
(1) $a_2,a_3,a_4$を求めよ。
(2) 第$n$項$a_n$を推測して、
その結果を数学的帰納法によって証明せよ。
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(4)〜合成関数と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(4)数列$\left\{a_n\right\},\left\{b_n\right\}$(ただし$a_1\neq 0$かつ$a_1\neq 1$)に対して1次関数
$f_n(x)=a_nx+b_n (n=1,2,\ldots)$
を定める。また、$\alpha=a_1, \beta=b_1$とおく。すべての自然数nに対して
$(f_n◦f_1)(x)=f_{n+1}(x)$
が成り立つとき、数列$\left\{a_n\right\},\left\{b_n\right\}$の一般項を$\alpha$と$\beta$の式で表すと
$a_n=\boxed{\ \ ク\ \ }, b_n=\boxed{\ \ ケ\ \ }$
となる。

2022慶應義塾大学医学部過去問
この動画を見る 

漸化式 関西医科大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021関西医科大学過去問題
$a_1=\frac{1}{13}$ n=1,2,・・・自然数
$5a_{n+1}=10a_n-a_{n+1}・a_n$
一般項$a_n$を求めよ
この動画を見る 

🟨=❓ 解けたら天才⁉️

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
1▢=1
2▢=2
3▢=6
▢=?
この動画を見る 
PAGE TOP