対数と整数の融合問題!難問です!解ける? #Shorts #ずんだもん #勉強 #数学 - 質問解決D.B.(データベース)

対数と整数の融合問題!難問です!解ける? #Shorts #ずんだもん #勉強 #数学

問題文全文(内容文):
logy_(6x+y)=xを満たす正の整数x,yの組を求めよ。
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
logy_(6x+y)=xを満たす正の整数x,yの組を求めよ。
投稿日:2024.12.16

<関連動画>

【数A】整数の性質:合同式① 整数a,b,cがa²+b²=c²を満たすとき、a,b,cのうち少なくとも1つは5の倍数である。このことを合同式を利用して証明せよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)整数a,b,cが$a^2+b^2=c^5$を満たすとき、a,b,cのうち少なくとも1つは5の倍数である。このことを合同式を利用して証明せよ。
(2)nが自然数のとき、$n^3+1$が3で割り切れるものをすべて求めよ。
この動画を見る 

【整数問題】素数を扱う難問!2通りで解説!【奈良県立医科大学】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
aを2以上の整数、pを2より大きい素数とする。ある正の整数kに対して等式a^p-1 -1=p^kが成り立つのは、a=2,p=3のみであることを示せ。
この動画を見る 

1111……111 全ての桁が1の整数には2019の倍数が必ずある

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
11111・・・111のようにすべての桁の数字が1である整数の中には2019の倍数があることを示せ
この動画を見る 

自然数の和  日大習志野

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1からnまでの自然数の和=210
n=?(n:自然数)

日本大学習志野高等学校
この動画を見る 

福田のおもしろ数学315〜不定方程式の整数解

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x^3 +y^3 +z^3 -3xyz=2003$を満たす整数$x, y, z$をすべて求めよ。
この動画を見る 
PAGE TOP