問題文全文(内容文):
任意の実数$x$、$y$、$z$に対して
$f(x+y)+f(y+z)+f(z+x) \geqq 3 f(x+2y+3z)$
が成り立つような実数値をとる関数 $f(x)$をすべて求めよ。
任意の実数$x$、$y$、$z$に対して
$f(x+y)+f(y+z)+f(z+x) \geqq 3 f(x+2y+3z)$
が成り立つような実数値をとる関数 $f(x)$をすべて求めよ。
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師:
福田次郎
問題文全文(内容文):
任意の実数$x$、$y$、$z$に対して
$f(x+y)+f(y+z)+f(z+x) \geqq 3 f(x+2y+3z)$
が成り立つような実数値をとる関数 $f(x)$をすべて求めよ。
任意の実数$x$、$y$、$z$に対して
$f(x+y)+f(y+z)+f(z+x) \geqq 3 f(x+2y+3z)$
が成り立つような実数値をとる関数 $f(x)$をすべて求めよ。
投稿日:2024.10.11





