【高校受験対策】数学-死守18 - 質問解決D.B.(データベース)

【高校受験対策】数学-死守18

問題文全文(内容文):
次の各問いに答えなさい.

①$15 - 9\div 3$を計算しなさい.

②$\dfrac{2}{7}\times \dfrac{3}{4}$を計算しなさい .

③$-5-3+7$を計算しなさい.

④$(3x - 2y) + 5(x - 4y)$ を計算しなさい.

⑤$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=2 \\
x+2y=-6
\end{array}
\right.
\end{eqnarray}$
を解きなさい.

⑦$\sqrt{15}\times \sqrt6 +\sqrt{10}$を計算しなさい.

⑧$x^2-2x-63$を因数分解しなさい.

⑧方程式$ 2x ^ 2 + 9x + 8 = 0$ を解きなさい.

⑨右の図のように,平行な2直線$\ell,m$があり,直線上に2点$A,B$
直線$m$上に2点$C,D$がある.
$AB=BC, \angle BCD = 42°$のとき,$\angle BAC$の大きさを求めなさい.

⑩下の表は,$y$が$x$に反比例する関係を表したものです.
表のⒶにあてはまる数を求めなさい.

⑪数字を書いた3枚のカード$①,②,③$が袋$A$の中に,
数字を書いた5枚のカード$①,②,③,④,⑤$が袋$B$の中に入っています.
それぞれの袋からカードを1枚ずつ取り出すとき,
その2枚のカードに書いてある数の積が奇数になる確率を求めなさい.

図は動画内参照
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#平方根#2次方程式#比例・反比例#確率#点と直線
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$15 - 9\div 3$を計算しなさい.

②$\dfrac{2}{7}\times \dfrac{3}{4}$を計算しなさい .

③$-5-3+7$を計算しなさい.

④$(3x - 2y) + 5(x - 4y)$ を計算しなさい.

⑤$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=2 \\
x+2y=-6
\end{array}
\right.
\end{eqnarray}$
を解きなさい.

⑦$\sqrt{15}\times \sqrt6 +\sqrt{10}$を計算しなさい.

⑧$x^2-2x-63$を因数分解しなさい.

⑧方程式$ 2x ^ 2 + 9x + 8 = 0$ を解きなさい.

⑨右の図のように,平行な2直線$\ell,m$があり,直線上に2点$A,B$
直線$m$上に2点$C,D$がある.
$AB=BC, \angle BCD = 42°$のとき,$\angle BAC$の大きさを求めなさい.

⑩下の表は,$y$が$x$に反比例する関係を表したものです.
表のⒶにあてはまる数を求めなさい.

⑪数字を書いた3枚のカード$①,②,③$が袋$A$の中に,
数字を書いた5枚のカード$①,②,③,④,⑤$が袋$B$の中に入っています.
それぞれの袋からカードを1枚ずつ取り出すとき,
その2枚のカードに書いてある数の積が奇数になる確率を求めなさい.

図は動画内参照
投稿日:2017.01.14

<関連動画>

福田の数学〜早稲田大学2022年教育学部第3問〜円の外接円の半径と円周上の点と原点の距離の最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)$を座標平面上の点とし、pは0でないとする。
AとBを通る直線をlとおく。Oを中心としlに接する円の面積を$D_1$で表す。
また、3点O,A,Bを通る円周で囲まれる円の面積を$D_2$とおく。次の問いに答えよ。
(1)$D_1$を$p,q$を使って表せ。
(2)点$(2,2\sqrt3)$を中心とする半径1の円周をCとする。点BがC上を動くときの
$D_1$と$D_2$の積$D_1D_2$の最小値と最大値を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

福田のわかった数学〜高校2年生033〜知って得する平行・垂直条件(2)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 知って得する平行・垂直条件(2)
$直線l:ax+by+c=0$
と$l$上にない$点A(x_0,y_0)$がある。
$(1)A$を通り$l$に平行な直線を求めよ。
$(2)A$を通りlに垂直な直線を求めよ。
この動画を見る 

【数Ⅱ】直線に対称な点を求める【図の描き方を数式に】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
直線に対称な点を求める方法に関して解説していきます.
この動画を見る 

福田のわかった数学〜高校2年生013〜直線の方程式

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 直線の方程式
3直線$\left\{
\begin{array}{1}
a_1x+b_1y=1\\
a_2x+b_2y=1\\
a_3x+b_3y=1
\end{array}
\right.$
 が1点で交わるとき、
3点$(a_1,b_1),(a_2,b_2),(a_3,b_3)$は一直線上にあることを示せ。
この動画を見る 

福田の数学〜東京大学2023年文系第2問〜定積分で表された関数と最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上の放物線y=3$x^2$-4xをCとおき、直線y=2xをlとおく。実数tに対し、C上の点P(t, $3t^2-4t$)とlの距離をf(t)とする。
(1)-1≦a≦2の範囲の実数aに対し、定積分
g(a)=$\displaystyle\int_{-1}^af(t)dt$
を求めよ。
(2)aが0≦a≦2の範囲を動くとき、g(a)-f(a)の最大値および最小値を求めよ。

2023東京大学文系過去問
この動画を見る 
PAGE TOP