問題文全文(内容文):
6次の多項式$P(x)$について
$0\lt a \lt b$が
$P(a)=P(-a),P(b)=P(-b),P'(0)=0$
を満たしている。
任意の$x$に対し$P(x)=P(-x)$が
成り立つことを証明せよ。
6次の多項式$P(x)$について
$0\lt a \lt b$が
$P(a)=P(-a),P(b)=P(-b),P'(0)=0$
を満たしている。
任意の$x$に対し$P(x)=P(-x)$が
成り立つことを証明せよ。
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
6次の多項式$P(x)$について
$0\lt a \lt b$が
$P(a)=P(-a),P(b)=P(-b),P'(0)=0$
を満たしている。
任意の$x$に対し$P(x)=P(-x)$が
成り立つことを証明せよ。
6次の多項式$P(x)$について
$0\lt a \lt b$が
$P(a)=P(-a),P(b)=P(-b),P'(0)=0$
を満たしている。
任意の$x$に対し$P(x)=P(-x)$が
成り立つことを証明せよ。
投稿日:2025.01.30





