福田の数学〜東京慈恵会医科大学2022年医学部第2問〜微分可能性と最大値と体積 - 質問解決D.B.(データベース)

福田の数学〜東京慈恵会医科大学2022年医学部第2問〜微分可能性と最大値と体積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 実数aは正の定数とする。実数全体で定義された関数f(x)=\frac{|x+a|}{\sqrt{x^2+1}}について、\\
\\
次の問いに答えよ。\\
(1)f(x)がx=-aで微分可能であるかどうか調べよ。\\
(2)f(x)の最大値が\sqrt2となるように、定数aの値を定めよ。\\
(3)定数aは(2)で定めた値とする。y=f(x)のグラフとx軸およびy軸で囲まれた部分\\
をx軸の周りに1回転させてできる立体の体積Vを求めよ。
\end{eqnarray}

2022東京慈恵会医科大学医学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 実数aは正の定数とする。実数全体で定義された関数f(x)=\frac{|x+a|}{\sqrt{x^2+1}}について、\\
\\
次の問いに答えよ。\\
(1)f(x)がx=-aで微分可能であるかどうか調べよ。\\
(2)f(x)の最大値が\sqrt2となるように、定数aの値を定めよ。\\
(3)定数aは(2)で定めた値とする。y=f(x)のグラフとx軸およびy軸で囲まれた部分\\
をx軸の周りに1回転させてできる立体の体積Vを求めよ。
\end{eqnarray}

2022東京慈恵会医科大学医学部過去問
投稿日:2022.02.23

<関連動画>

東大 不等式 たくみさん4度目の登場 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'09東京大学過去問題
実数$x,-1<x<1,x \neq 0$
(1)示せ
$(1-x)^{1-\frac{1}{x}} < (1+x)^{\frac{1}{x}} $
(2)示せ
$0.9999^{101} < 0.99 < 0.9999^{100} $
この動画を見る 

福田の数学〜この関数にピンときたら大正解〜北里大学2023年医学部第2問〜関数の増減と方程式の実数解の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数$f(x)=2^x-x^2$について考える。必要ならば、$0.6 \lt \log 2 \lt 0.7,-0.4 \lt \log(\log2) \lt -0.3$を用いてよい。
(1)$f(x)$は区間 $x \geqq 4$で増加することを示せ。
(2)方程式$f'(x)=0$の異なる実数解の個数を求めよ。
(3)方程式$f(x)=0$の異なる実数解の個数を求めよ。
(4)方程式$f(x)=0$の実数解のうち、最小のものを$p$とする。
この時、曲線$y=f(x)$の$x \leq 0$の部分、放物線$y=-x^2+\dfrac{2}{\log2}x$、および2つの直線$x=p,x=0$で囲まれた図形の面積を求めよ。

2023北里大学医過去問
この動画を見る 

福田のわかった数学〜高校3年生理系095〜不等式の証明(2)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(2)\\
x\log x \geqq (x-1)\log(x+1) (x \geqq 1)を証明せよ。
\end{eqnarray}
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第1問(2)〜三角不等式の一般解

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (2)xを変数とする2次方程式\ x^2+(2\sqrt2\cos\theta)x+\sqrt2\sin\theta=0\ が\\
異なる2つの実数解をもつような実数\thetaの範囲は\boxed{\ \ ア\ \ }\ である。
\end{eqnarray}

2022慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜北海道大学2023年理系第5問〜中間値の定理と関数の増減PART2

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ a,bを$a^2$+$b^2$< 1を満たす正の実数とする。また、座標平面上で原点を中心とする半径1の円をCとし、Cの内部になる2点A(a,0), B(0,b)を考える。
0<θ<$\frac{\pi}{2}$に対してC上の点P($\cos\theta$, $\sin\theta$)を考え、PにおけるCの接線に関してBと対称な点をDとおく。
(1)$f(\theta)$=ab$\cos2\theta$+a$\sin\theta$-b$\cos\theta$とおく。方程式$f(\theta)$=0の解が0<θ<$\frac{\pi}{2}$の範囲に少なくとも一つ存在することを示せ。
(2)Dの座標をa,θを用いて表せ。
(3)θが0<θ<$\frac{\pi}{2}$の範囲を動くとき、3点A,P,Dが同一直線上にあるようなθは少なくとも一つ存在することを示せ。また、このようなθはただ一つであることを示せ。

2023北海道大学理系過去問
この動画を見る 
PAGE TOP