福田の数学〜大阪大学2022年文系第3問〜6分の1公式の証明と面積の最小 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2022年文系第3問〜6分の1公式の証明と面積の最小

問題文全文(内容文):
以下の問いに答えよ。
(1)実数$\alpha,\beta$に対し、

$\int_{\alpha}^{\beta}(x-\alpha)(x-\beta)dx=\frac{(\alpha-\beta)^3}{6}$
が成り立つことを示せ。
(2)a,bを$b \gt a^2$を満たす定数とし、座標平面に点$A(a,b)$をとる。さらに、
点Aを通り、傾きがkの直線をlとし、直線lと放物線$y=x^2$で囲まれた部分の面積を
$S(k)$とする。kが実数全体を動くとき、$S(k)$の最小値を求めよ。

2022大阪大学文系過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)実数$\alpha,\beta$に対し、

$\int_{\alpha}^{\beta}(x-\alpha)(x-\beta)dx=\frac{(\alpha-\beta)^3}{6}$
が成り立つことを示せ。
(2)a,bを$b \gt a^2$を満たす定数とし、座標平面に点$A(a,b)$をとる。さらに、
点Aを通り、傾きがkの直線をlとし、直線lと放物線$y=x^2$で囲まれた部分の面積を
$S(k)$とする。kが実数全体を動くとき、$S(k)$の最小値を求めよ。

2022大阪大学文系過去問
投稿日:2022.04.27

<関連動画>

【数Ⅱ】式と証明:分数式の基本

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の計算をしよう。
$\dfrac{x^2-y^2}{x^2-(y-z)^2}\times\dfrac{(x-y)^2-z^2}{x^2-xy}\div \dfrac{x^2+2xy+y^2}{x^2+xy-xz}$
この動画を見る 

【数Ⅱ】【式と証明】展開式の係数 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (2x²-1)⁶ [x⁶]  (2)(2x³-3x)⁵ [x⁹]

次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (a+b+c)⁶ [ab²c³]  (2)(x+y-3z)⁸ [x⁵yz²]

次の式の展開式における、[ ]内のものを求めよ。
(1) (x²+1/x)⁷ [x²の項の係数]  (2)(2x³-1/3x²)⁵ [定数項]   

次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (x+y+z)⁶ [x²yz³]
(2) (x+2y+3z)⁶ [x³y²z]
(3) (2x-3y+z)⁷ [x²y²z³]
(4) (x+y-3z)⁸ [x⁵z³]
この動画を見る 

福田のおもしろ数学533〜凸四角形の性質に関する証明

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#式と証明#周角と円に内接する四角形・円と接線・接弦定理#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

凸四角形$ABCD$において

$\angle CBD = 2\angle ADB,\angle ABD = 2\angle CDB,AB=CB$

のとき、

$AD=CD$を証明して下さい。

図は動画内参照
この動画を見る 

【数Ⅱ】式と証明:実数x,y,zがx+y+z=0を満たすとき(x+y)(y+z)(z+x)=-xyzが成り立つことを証明せよ。

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #クリアー数学#クリアー数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
実数x,y,zがx+y+z=0を満たすとき(x+y)(y+z)(z+x)=-xyzが成り立つことを証明せよ。
この動画を見る 

ε-δ論法 #1 f(x)=√xが連続

アイキャッチ画像
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
Question
$f(x)=\sqrt x\ (x\geqq 0)$が連続であることを$\xi -\vartheta$論法で示せ.
この動画を見る 
PAGE TOP