福田のわかった数学〜高校3年生理系078〜極値(2)極値を求める - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系078〜極値(2)極値を求める

問題文全文(内容文):
数学$\textrm{III}$ 極値(2)
$f(x)=x^2e^{-|x-a|} (a \gt 2)$の極値を求めよ。
単元: #微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極値(2)
$f(x)=x^2e^{-|x-a|} (a \gt 2)$の極値を求めよ。
投稿日:2021.09.26

<関連動画>

大阪大学 対数 不等式 質問への返答「対数微分法」高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#微分法#色々な関数の導関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
大阪大学過去問題
xの範囲を求めよ
$\log_2(1-x)+\log_4(x+4) \leqq 2$
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用1 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
 $x>0$のとき、次の不等式を証明せよ。

(1) $sin x>x-\displaystyle \frac{x^2}{2}$

(2) $1-\displaystyle \frac{x}{2}<\displaystyle \frac{1}{\sqrt{1+x}}<1-\displaystyle \frac{x}{2}+\displaystyle \frac{3x^2}{8}$
この動画を見る 

名古屋大 微分 複雑な方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$f(x)=x^{-2}2^x$ $(x \neq 0)$
$f'(x) \gt 0$となる条件を求めよ

(2)
$2^x=x^2$実数解の個数を求めよ

(3)
$2^x=x^2$の有理数解をすべて求めよ

出典:2015年名古屋大学 過去問
この動画を見る 

福田のわかった数学〜高校3年生理系105〜絶対不等式(3)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 絶対不等式(3)
$0 \leqq x \lt \frac{\pi}{2}$であるすべてのxについて
$\sin x\cos x \leqq kk(\sin^2x+3\cos^2x)$
が成り立つような実数kの最小値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第4問〜カテナリーと円の相接

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ 
曲線$y=\dfrac{e^x+e^{-x}}{2} (x \gt 0)$を$C$で表す。$\textrm{Q}(X,Y)$を中心とする半径$r$の円が曲線$C$と、点$\textrm{P}(t,\dfrac{e^t+e^{-t}}{2})$ (ただし$t \gt 0$)において共通の接線をもち、さらに$X \lt t$であるとする。このとき$X$および$Y$を$t$の式で表すと
$X=\boxed{\ \ (あ)\ \ }, Y=\boxed{\ \ (い)\ \ }$
となる。$t$の関数$X(t),Y(t)$を$X(t)=\boxed{\ \ (あ)\ \ },Y(t)=\boxed{\ \ (い)\ \ }$により定義する。全ての$t \gt 0$に対して$X(t) \gt 0$となるための条件は、$r$が不等式$\boxed{\ \ (う)\ \ }$を満たすことである。$\boxed{\ \ (う)\ \ }$が成り立たないとき、関数$Y(t)$は$t=\boxed{\ \ (え)\ \ }$において最小値$\boxed{\ \ (お)\ \ }$をとる。また$\boxed{\ \ (う)\ \ }$が成り立つとき、$Y$を$X$の関数と考えて、$(\dfrac{dY}{dX})^2+1$を$Y$の式で表すと$(\dfrac{dY}{dX})^2+1=\boxed{\ \ (か)\ \ }$ となる。

2021慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP