北海道大 整数 - 質問解決D.B.(データベース)

北海道大 整数

問題文全文(内容文):
$n^2+n+14$が平方数となるような$n$(自然数)をすべて求めよ

出典:北海道大学 過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+n+14$が平方数となるような$n$(自然数)をすべて求めよ

出典:北海道大学 過去問
投稿日:2019.12.18

<関連動画>

福田のおもしろ数学324〜条件を満たす素数を調べる

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$p+2,p+6,p+8,p+12,p+14$がすべて素数になるような素数$p$をすべて求めよ。
$q+2,q+6,q+8,q+12$がすべて素数になるような素数qが$200$以下の自然数の中に少なくとも3個あることを示せ。
この動画を見る 

整数の基本問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,nを自然数とし$(m \gt n)$,pを素数とする.
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{1}{p}$のとき,
mは偶数であることを示せ.
この動画を見る 

旭川医科大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
p^3-q^3-27r^3-9pqr=0 \\
p^2-10q-30r=11
\end{array}
\right.
\end{eqnarray}$
を満たす自然数$(p,q,r)$の組をすべて求めよ.

2015旭川医科大過去問
この動画を見る 

一発で二重根号を外せ

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
二重根号を外せ.
$\sqrt{283-36\sqrt{30}}$
$\sqrt{111+24\sqrt{10}}$
この動画を見る 

2020年問題 2020整数問題 その2

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
連続$n$個の自然数の和が$2020$となる$n$と先頭の自然数$a$
$(a,n)$の組を全て求めよ
この動画を見る 
PAGE TOP