2021東京医科大学 そんなやり方もあるか!4次方程式の解 - 質問解決D.B.(データベース)

2021東京医科大学 そんなやり方もあるか!4次方程式の解

問題文全文(内容文):
$x^4+11x^3+31x^2+11x+1=0$の$4$つの解を$\alpha,\beta,\delta,\zeta$とする.
$x+\dfrac{1}{x}=y$として,$y$の方程式を求めよ.

①$\dfrac{1}{\alpha}+\dfrac{1}{\beta}+\dfrac{1}{\delta}+\dfrac{1}{\zeta}$
②$\alpha^2+\beta^2+\delta^2+\zeta^2$
③$\alpha^3+\beta^3+\delta^3+\zeta^3$

2021東京医科大過去問
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^4+11x^3+31x^2+11x+1=0$の$4$つの解を$\alpha,\beta,\delta,\zeta$とする.
$x+\dfrac{1}{x}=y$として,$y$の方程式を求めよ.

①$\dfrac{1}{\alpha}+\dfrac{1}{\beta}+\dfrac{1}{\delta}+\dfrac{1}{\zeta}$
②$\alpha^2+\beta^2+\delta^2+\zeta^2$
③$\alpha^3+\beta^3+\delta^3+\zeta^3$

2021東京医科大過去問
投稿日:2021.02.09

<関連動画>

複素関数論⑩ 高専数学 複素積分*ex2, *2

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$C_{\alpha}:Z=\alpha+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C\alpha}^{} \ \dfrac{1}{(Z-\alpha)^n}\ \alpha_Z$

(2) $C_{\alpha}:Z=1+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C}^{} \ \dfrac{2}{Z-1}\ \alpha_Z$
この動画を見る 

複素関数論⑨ 高専数学 複素積分*1(1)-(3)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#積分とその応用#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
複素積分の定義を解説していきます.
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(1)〜2次方程式が整数を解にもつ条件

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$a$と$b$を正の整数とし、$f(x)=ax^2-bx+4$とおく。2次方程式$f(x)=0$は
異なる2つの実数解をもつとする。
$(\textrm{a})$2次方程式$f(x)=0$の2つの解がともに整数であるとき
$\left\{
\begin{array}{1}
a=1  \\
b=\boxed{\ \ ア\ \ }
\end{array}
\right.$  
または 
$\left\{
\begin{array}{1}
a=\boxed{\ \ イ\ \ }\\
b=\boxed{\ \ ウ\ \ }
\end{array}
\right.\\$
である。

$(\textrm{b})b=7$とする。2次方程式$f(x)=0$の2つの解のうち一方が整数であるとき、
$a=\boxed{\ \ エ\ \ }$であり、$f(x)=0$の2つの解は
$x=\boxed{\ \ エ\ \ },\ \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}$
である。

2021明治大学理工学部過去問
この動画を見る 

特殊な方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解であるとき,これを解け.
$3^x-54x+135=0$
この動画を見る 

複素関数論⑦(逆関数)高専数学*24(1)-(3)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の値を求めよ.

(1)$\sqrt i$
(2)$\sqrt{1+i}$
(3)$\sqrt{-4}$
この動画を見る 
PAGE TOP