福田のおもしろ数学271〜再帰関数の値を計算する - 質問解決D.B.(データベース)

福田のおもしろ数学271〜再帰関数の値を計算する

問題文全文(内容文):
整数を定義域とする関数が次のように定義されている。
\begin{eqnarray}
f(n)
=
\begin{cases}
n-3 & ( n \geqq 1000 ) \\
f(f(n+5)) & ( n \lt 1000 )
\end{cases}
\end{eqnarray}
このとき$f(84)$を求めよ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
整数を定義域とする関数が次のように定義されている。
\begin{eqnarray}
f(n)
=
\begin{cases}
n-3 & ( n \geqq 1000 ) \\
f(f(n+5)) & ( n \lt 1000 )
\end{cases}
\end{eqnarray}
このとき$f(84)$を求めよ
投稿日:2024.09.29

<関連動画>

ちょっと難しいか...?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
32,7,105,98,64,606,73

この中から2つの整数を選ぶとその差が必ず6で割り切れるものがあることを説明せよ
この動画を見る 

整数問題 あれを使えばスッキリ解決

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,bが互いに素ならば、abとa²-b²も互いに素であることを示せ
この動画を見る 

でんがんさん初登場 大阪大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の整数m,nが不等式
$\sqrt n \leqq \frac{m}{2} < \sqrt{n+1}$をみたす。以下を示す。
(1)$m^2-4n=0 or 1$
(2)$m < \sqrt n+ \sqrt m < m+1$
この動画を見る 

福田のおもしろ数学370〜フェルマーの小定理の証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
フェルマーの小定理
素数$p$と整数$a$が互いに素のとき
$a^{p-1}\equiv1~~({\rm mod} ~p)$であることを証明せよ。
この動画を見る 

割り算 余り

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2022^2$を$2021$で割った余りは?
この動画を見る 
PAGE TOP