福田の数学〜早稲田大学2023年人間科学部第4問〜絶対値の付いた2次関数とx分のyの最大値 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2023年人間科学部第4問〜絶対値の付いた2次関数とx分のyの最大値

問題文全文(内容文):
$\Large\boxed{4}$ $a$を1以上の定数とする。点P($x$,$y$)は曲線$y$=$|x^2-5x+4|$上を動く点で、$x$座標は1≦$x$≦$a$を満たすものとする。このとき$\displaystyle\frac{y}{x}$の最大値が、定数$a$の値によらないような$a$の値の範囲は、
$\boxed{\ \ シ\ \ }$≦$a$≦$\boxed{\ \ ス\ \ }$+$\sqrt{\boxed{\ \ セ\ \ }}$
である。この範囲の$a$の値における$\displaystyle\frac{y}{x}$の最大値は$\boxed{\ \ ソ\ \ }$である。
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $a$を1以上の定数とする。点P($x$,$y$)は曲線$y$=$|x^2-5x+4|$上を動く点で、$x$座標は1≦$x$≦$a$を満たすものとする。このとき$\displaystyle\frac{y}{x}$の最大値が、定数$a$の値によらないような$a$の値の範囲は、
$\boxed{\ \ シ\ \ }$≦$a$≦$\boxed{\ \ ス\ \ }$+$\sqrt{\boxed{\ \ セ\ \ }}$
である。この範囲の$a$の値における$\displaystyle\frac{y}{x}$の最大値は$\boxed{\ \ ソ\ \ }$である。
投稿日:2023.08.18

<関連動画>

福田の数学〜東北大学2023年文系第3問〜軸の動く最大最小

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ aを実数とし、2次関数f(x)=$x^2$+2$ax$-3 を考える。実数xがa≦x≦a+3 の範囲を動くときのf(x)の最大値および最小値を、それぞれM(a), m(a)とする。
以下の問いに答えよ。
(1)M(a)をaを用いて表せ。
(2)m(a)をaを用いて表せ。
(3)aがすべての実数を動くとき、m(a)の最小値を求めよ。

2023東北大学文系過去問
この動画を見る 

東大 数学 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$a^2+b^2=16$
$a^3+b^3=44$

(1)
$a+b$の値は?

(2)
$a^n+b^n(n \geqq 2,$自然数$)$が4の倍数であることを示せ

出典:1997年東京大学 過去問
この動画を見る 

Mr 東北大 1浪1留院試落ち 人生各駅停車 さがらごうち

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
動画内の図を参照して求めよ
(1)
$AP$

(2)
$OD$

(3)
$\cos \angle OAD$

(4)
$AC$

(5)
$\triangle ABC$
この動画を見る 

中部大(経済)整式の剰余

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(2x^3+x^2+1)^3$を$x^2-x+1$で割った余りを求めよ

出典:中部大学経営情報学部 過去問
この動画を見る 

連立三元三次方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^3=xyz+2 \\
y^3=xyz+3 \\\
z^3=xyz-5
\end{array}
\right.
\end{eqnarray}$

実数解を解け.
この動画を見る 
PAGE TOP