【数Ⅲ】【微分とその応用】不等式の応用3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】不等式の応用3 ※問題文は概要欄

問題文全文(内容文):
すべての正の数xに対して、

不等式$\sqrt{x}>a\log x$が成り立つような定数aの値の範囲を求めよ。
チャプター:

0:00 問題概要
0:50 解説開始

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
すべての正の数xに対して、

不等式$\sqrt{x}>a\log x$が成り立つような定数aの値の範囲を求めよ。
投稿日:2025.01.22

<関連動画>

タクミと貫太郎 微分を語ろう!「は(速さ)じ(時間)き(距離)「はじき」を使うとゲロが出る」

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
微分についての解説動画
は(速さ)じ(時間)き(距離)「はじき」
この動画を見る 

【数Ⅲ】微分法:sinを微分するとどうなる??グラフのイメージでサクッとわかる♪

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
sinを微分するとどうなる??
この動画を見る 

福田の数学〜絞り込めればなんとかなる!〜明治大学2023年全学部統一ⅠⅡAB第1問(4)〜不等式を満たす自然数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
自然数$m,n$があり、$1\lt m\lt n$とする。

$\displaystyle (m+\frac{1}{n})(n+\frac{1}{m})\leqq 12$

を満たす$(m,n)$を求めよ。

2023明治大学過去問
この動画を見る 

対数の近似値の求め方

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{246}$と$3^{144}$どちらが大きいか求めよ
この動画を見る 

福田の数学〜千葉大学2023年第9問〜関数の増減と最大Part2

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{9}$ 関数$f(x)$と実数$t$に対し、$x$の関数$tx$-$f(x)$の最大値があればそれを$g(t)$と書く。
(1)$f(x)$=$x^4$のとき、任意の実数$t$について$g(t)$が存在する。この$g(t)$を求めよ。
以下、関数$f(x)$は連続な導関数$f''(x)$を持ち、次の2つの条件(i),(ii)が成り立つものとする。
(i)$f'(x)$は増加関数、すなわち$a$<$b$ならば$f'(a)$<$f'(b)$
(ii)$\displaystyle\lim_{x \to -\infty}f'(x)$=$-\infty$ かつ $\displaystyle\lim_{x \to \infty}f'(x)$=$\infty$
(2)任意の実数$t$に対して、$x$の関数$tx$-$f(x)$は最大値$g(t)$を持つことを示せ。
(3)$s$を実数とする。$t$が実数全体を動くとき、$t$の関数$st$-$g(x)$は最大値$f(s)$となることを示せ。
この動画を見る 
PAGE TOP