【数Ⅱ】図形と方程式:横浜国立大2019年(理系)第4問の解説 - 質問解決D.B.(データベース)

【数Ⅱ】図形と方程式:横浜国立大2019年(理系)第4問の解説

問題文全文(内容文):
横浜国立大(理系)
2019年度(前期)第4問

Oを原点とするxy平面上に2点A(2,0)、B(0,2)がある。2点P、Qは以下の条件を満たしながら動く。
・Pは線分OA上にある。
・Qは線分OB上にある。
・△OPQの面積は1である。
点Pの座標を(t,0)とする。
(1)tの取りうる値の範囲を求めよ。
(2)tが(1)で求めた範囲を動くとき、線分PQが通過する領域をxy平面上に図示せよ。
チャプター:

0:00 オープニング
1:00 (1)の解説
2:05 (2)を解くためのポイント
4:11 (2)の場合分け

単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大(理系)
2019年度(前期)第4問

Oを原点とするxy平面上に2点A(2,0)、B(0,2)がある。2点P、Qは以下の条件を満たしながら動く。
・Pは線分OA上にある。
・Qは線分OB上にある。
・△OPQの面積は1である。
点Pの座標を(t,0)とする。
(1)tの取りうる値の範囲を求めよ。
(2)tが(1)で求めた範囲を動くとき、線分PQが通過する領域をxy平面上に図示せよ。
投稿日:2021.12.02

<関連動画>

筑波大 4次方程式

単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2006年 国立大学法人筑波大学 過去問

$f(x)=x^4+2x^2-4x+8$
$(x^2+t)^2-f(x)=(px+q)^2$
を満たす整数$p,q,t$
$f(x)=0$を解け

この動画を見る 

指数不等式

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$3^x・25^{\frac{1}{x}}\leqq 45$
この動画を見る 

【短時間でポイントチェック!!】三角関数の合成〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$r \sin(\theta+\alpha)$の形に表せ。
ただし、$r>0,-\pi<\alpha≦\pi$とする。
①$\sin\theta-\cos\theta$
②$\frac{\sqrt{3}}{2}\sin\theta+\frac{1}{2}\cos\theta$
この動画を見る 

東北大学 三次方程式 解と係数の関係 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2013東北大学過去問題
$f(x)=x^3-kx^2-1$
f(x)=0の3解をα,β,γとする。
g(x)は$x^3$の係数が1である3次式で、g(x)=0の3解は、αβ,βγ,γαである。
(1)g(x)をkを用いて表せ。
(2)f(x)=0,とg(x)=0が共通解をもつkの値。
この動画を見る 

2021同志社大 4次方程式4つの虚数解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$c$は実数であり,定数である.
$x^4+cx^3+cx^2+cx+1=0$の$4$つの解がすべて虚数となる.$c$の必要十分条件である.
$4$つの虚数解が複素平面上で正方形になる$c$の値を求めよ.

2021同志社過去問
この動画を見る 
PAGE TOP