数1 - 質問解決D.B.(データベース)

数1

問題文全文(内容文):
$m,n$は自然数である.
$(m,n)$を求めよ.

①$m^2-n^2-2n=21$
②$m^3+n^3-3mn=3$
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数である.
$(m,n)$を求めよ.

①$m^2-n^2-2n=21$
②$m^3+n^3-3mn=3$
投稿日:2020.05.02

<関連動画>

999C n が5の倍数になる最小のn

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
${}_{999} \mathrm{ C }_n$が$5$の倍数となる最小の$n$を求めよ.
この動画を見る 

中学レベル 倍数の見分け方の証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は1~9の整数である.
$XX+YY+ZZ=XYZ$
これを解け.
この動画を見る 

ガウス記号・漸化式・合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[(7+\sqrt{41}^{2021}]$を$2^{2021}$で割った余りを求めよ.
この動画を見る 

灘中 整数問題 大学入試レベル

アイキャッチ画像
単元: #算数(中学受験)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#過去問解説(学校別)#数学(高校生)#灘中学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A=377^6$
①$A$の約数のうち14で割って余りが1
②$A$の約数のうち15で割って余りが1

①②それぞれ個数

出典:2019年灘中学校 過去問
この動画を見る 

中学生向け整数問題その2

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,nを自然数とする.
$6mn=9m-10n+303$を満たす(m,n)をすべて求めよ.
この動画を見る 
PAGE TOP